• Title/Summary/Keyword: influence of isolation method

Search Result 34, Processing Time 0.027 seconds

Review of seismic studies of liquid storage tanks

  • Zhao, Ming;Zhou, Junwen
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.557-572
    • /
    • 2018
  • The academic research works about liquid storage tanks are reviewed for the purpose of providing valuable reference to the engineering practice on their aseismic design. A summary of the performance of tanks during past earthquakes is described in this paper. Next, the seismic response of tanks under unidirectional earthquake is reported, supplemented with the dynamic response under multidirectional motions. Then, researches on the influence of soil-structure interaction are brought out to help modify the seismic design approach of tanks in different areas with variable properties of soils. Afterwards, base isolation systems are reported to demonstrate their effectiveness for the earthquake-resistant design of liquid storage tanks. Further, researches about the liquid-structure interaction are reviewed with description of simplified models and numerical analytical methods, some of which consider the elastic effect of tank walls. Moreover, the liquid sloshing phenomenon on the hydrodynamic behaviors of tanks is presented by various algorithms including grid-based and meshfree method. And then the impact of baffles in changing the dynamic characteristics of the liquid-structure system is raised, which shows the energy dissipation by the vortex motion of liquid. In addition, uplifting effect is given to enhance the understanding on the capacity of unanchored tanks and some assessment of their development. At last, the concluding remarks and the aspects of extended research in the field of liquid storage tanks under seismic loads are provided, emphasizing the thermal stress analysis, the replaceable system for base isolation, the liquid-solid interaction and dynamic responses with stochastic excitations.

A Study on Experimental Method of Blasting Vibration in Curing Concrete (양생중인 콘크리트에서의 발파진동의 영향 시험방법에 대한 연구)

  • Kim, Jang-Deuk;Kim, Yong-Ha
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.417-422
    • /
    • 2009
  • Tunnels that have recently been constructed are characterized by longer length than ever before and furthermore they frequently go through the ground area with poor conditions such as fractured zones. If ground strength is weak, plastic deformation of tunnel occurs, and occasionally a big fall may be brought about. Up to now, the construction work of tunneling has been executed as a sequential method placing the lining concrete after completion of excavation. Such a method requires a long time and much money to complete the tunnel. It is hard to ensure the stability of tunnel if tunnel is left undone for a long time after excavation in fracture zones or plastic grounds. For this reason, we tried to take simultaneous construction of tunnel excavation and lining concrete in order to not only shorten construction schedule but also stabilize the tunnel at the highly fractures zone as soon as possible. As preliminary consideration for simultaneous construction, in-situ tests are performed to calculate the isolation distance over which blasting vibration does not influence the strength of lining concrete. Improvement of ling form, placing method of concrete, ventilation using a dust collector, together with equipment arrangement, was made to assure the simultaneous construction work.

An Investigation of the deformation of underground excavations in slat and potash mines

  • Kwon, Sang-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.83-114
    • /
    • 1998
  • The most widely accepted method for understanding the deformation mechanism of rock is from the use of computer simulation. However, if the changes in rock properties after excavation are significant this will prevent the computer simulation kent predicting the deformation with acceptable accuracy. If the deformations are, however, carefully measured in situ, the resulting data can be more useful far predicting the deformational behavior of underground openings, since the effect of the parameters which influence the deformational behavior are included in the measurement. In this study, extensive data analyses were carried out using the deformation measurements from the Waste Isolation Pilot Plant (WIPP), which is a permanent nuclear waste repository The results from computer simulations were compared with field measurements to evaluate the assumptions used in the computer simulations, For better description of the deformational behavior around underground excavations, several techniques were developed, namely: (a) the calculation of the zero strain boundary; (b) the evaluation of the influence of adjacent excavations on the deformational behavior of pre-excavated openings; (c) the description of the deformational behavior using in situ measurements; (d) the calculation of the shear stress distribution; and (e) the application of a Neural Network for the prediction of opening deformation.

  • PDF

Seismic analysis of half-through steel truss arch bridge considering superstructure

  • Li, Ruiqi;Yuan, Xinzhe;Yuan, Wancheng;Dang, Xinzhi;Shen, Guoyu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.387-401
    • /
    • 2016
  • This paper takes a half-through steel truss arch bridge as an example. A seismic analysis is conducted with nonlinear finite element method. Contrast models are established to discuss the effect of simplified method for main girder on the accuracy of the result. The influence of seismic wave direction and wave-passage on seismic behaviors are analysed as well as the superstructure and arch ring interaction which is mostly related with the supported bearings and wind resistant springs. In the end, the application of cable-sliding aseismic devices is discussed to put forward a layout principle. The main conclusions include: (1) The seismic response isn't too distinctive with the simplified method of main girder. Generally speaking, the grillage method is recommended. (2) Under seismic input from different directions, arch foot is usually the mostly dangerous section. (3) Vertical wave input and horizontal wave-passage greatly influence the seismic responses of arch ring, significantly increasing that of midspan. (4) The superstructure interaction has an obvious impact on the seismic performance. Half-through arch bridges with long spandrel columns fixed has a less response than those with short ones fixed. And a large stiffness of wind resistant spring makes the the seismic responses of arch ring larger. (5) A good isolation effectiveness for half-through arch bridge can be achieved by a reasonable arrangement of CSFABs.

Analysis of fiber-reinforced elastomeric isolators under pure "warping"

  • Pinarbasi, Seval;Mengi, Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.31-47
    • /
    • 2017
  • As a relatively new type of multi-layered rubber-based seismic isolators, fiber-reinforced elastomeric isolators (FREIs) are composed of several thin rubber layers reinforced with flexible fiber sheets. Limited analytical studies in literature have pointed out that "warping" (distortion) of reinforcing sheets has significant influence on buckling behavior of FREIs. However, none of these studies, to the best knowledge of authors, has investigated their warping behavior, thoroughly. This study aims to investigate, in detail, the warping behavior of strip-shaped FREIs by deriving advanced analytical solutions without utilizing the commonly used "pressure", incompressibility, inextensibility and the "linear axial displacement variation through the thickness" assumptions. Studies show that the warping behavior of FREIs mainly depends on the (i) aspect ratio (shape factor) of the interior elastomer layers, (ii) Poisson's ratio of the elastomer and (iii) extensibility of the fiber sheets. The basic assumptions of the "pressure" method as well as the commonly used incompressibility assumption are valid only for isolators with relatively large shape factors, strictly incompressible elastomeric material and nearly inextensible fiber reinforcement.

Cross-cultural Studies Revisited in International Business (국제비즈니스에서 비교문화 연구의 재검토)

  • Cho, Ho-Hyeon
    • Iberoamérica
    • /
    • v.12 no.1
    • /
    • pp.407-439
    • /
    • 2010
  • Growth of researches addressing cross-culture in international business is exponential. This article reviews the extant researches around the national culture and describes the various conceptualization of culture through discussion of some of popular models of national culture. This article presented some of the most important issues in international business surrounding globalization, especially convergence and divergence of cultures and cultural changes. Global rapid changes in international business environment request the reconsideration of the assumption of cultural stability and the simple view of culture, which tends to examine the static influence of a few cultural factors in isolation form other cultural factors and contextual elements. This paper identifies a valid cultural grouping and proposes the following typology of the possible methodologies in international business; Ethnological description, Use of proxies, Direct values inference, and Indirect values inference. Rather than selecting a single methodology, it appears to be more appropriate to use multi-method in the cross-cultural international business research. It has been shown that cultural change is intertwined with socioeconomic-institutional variables, and that these variables may also add to determine culture contemporarily. This paper also explained the dynamics of culture as multi-level, multi-layer constructs. According to this model, we may understand how the dynamic nature of culture conveys the top-down-bottom-up processes where one cultural level affects changes in other level of culture.

Dynamic response of a base-isolated CRLSS with baffle

  • Cheng, Xuansheng;Liu, Bo;Cao, Liangliang;Yu, Dongpo;Feng, Huan
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.411-421
    • /
    • 2018
  • Although a rubber isolation cushion can reduce the dynamic response of a structure itself, it has little influence on the height of a sloshing wave and even may induce magnification action. Vertical baffles are set into a base-isolated Concrete Rectangular Liquid Storage Structure (CRLSS), and baffles are opened as holes to increase the energy dissipation of the damping. Problems of liquid nonlinear motion caused by baffles are described using the Navier-Stokes equation, and the space model of CRLSS is established considering the Fluid-Solid Interaction (FSI) based on the Finite Element Method (FEM). The dynamic response of an isolated CRLSS with various baffles under an earthquake is analyzed, and the results are compared. The results show that when the baffle number is certain, the greater the number of holes in baffles, the worse the damping effects; when a single baffle with holes is set in juxtaposition and double baffles with holes are formed, although some of the dynamic response will slightly increase, the wallboard strain and the height of the sloshing wave evidently decrease. A configuration with fewer holes in the baffles and a greater number of baffles is more helpful to prevent the occurrence of two failure modes: wallboard leakage and excessive sloshing height.

Evaluation of mode-shape linearization for HFBB analysis of real tall buildings

  • Tse, K.T.;Yu, X.J.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.423-441
    • /
    • 2014
  • The high frequency base balance (HFBB) technique is a convenient and relatively fast wind tunnel testing technique for predicting wind-induced forces for tall building design. While modern tall building design has seen a number architecturally remarkable buildings constructed recently, the characteristics of those buildings are significantly different to those that were common when the HFBB technique was originally developed. In particular, the prediction of generalized forces for buildings with 3-dimensional mode shapes has a number of inherent uncertainties and challenges that need to be overcome to accurately predict building loads and responses. As an alternative to the more conventional application of general mode shape correction factors, an analysis methodology, referred to as the linear-mode-shape (LMS) method, has been recently developed to allow better estimates of the generalized forces by establishing a new set of centers at which the translational mode shapes are linear. The LMS method was initially evaluated and compared with the methods using mode shape correction factors for a rectangular building, which was wind tunnel tested in isolation in an open terrain for five incident wind angles at $22.5^{\circ}$ increments from $0^{\circ}$ to $90^{\circ}$. The results demonstrated that the LMS method provides more accurate predictions of the wind-induced loads and building responses than the application of mode shape correction factors. The LMS method was subsequently applied to a tall building project in Hong Kong. The building considered in the current study is located in a heavily developed business district and surrounded by tall buildings and mixed terrain. The HFBB results validated the versatility of the LMS method for the structural design of an actual tall building subjected to the varied wind characteristics caused by the surroundings. In comparison, the application of mode shape correction factors in the HFBB analysis did not directly take into account the influence of the site specific characteristics on the actual wind loads, hence their estimates of the building responses have a higher variability.

Influence of donor plant growth condition, microspore isolation method, culture medium, and light culture on the production of embryos in microspore culture of hot pepper (Capsicum annuum L.) (고추의 소포자 배양 시 모식물의 생육조건, 소포자 나출 방법, 치상배지 및 광배양이 배의 발생에 미치는 영향)

  • Lee, Jong-Suk;Park, Eun-Joon;Kim, Moon-Za
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.363-373
    • /
    • 2007
  • To establish an efficient and reliable microspore culture system for pepper (Capsicum annuum L.), the effect of light intensity used for donor plant's growth, microspore isolation methods, the composition of culture medium, and culture period in light on the production of embryos were investigated. The viability of microspores taken from the plants grown under the light intensity of 10,000 lux was almost same as that from the lower (5,500 lux) light intensity, and the embryo induction and development were a bit higher when donor plants were grown under the lower light intensity. This result implies that lower light intensity does not interfere with the embryo induction and development. However, it was very difficult to prepare microspores for culture since only a small number of flower buds could be harvested from plants grown under the light intensity of 5,500 lux. Microspore isolation methods greatly affected microspores viability; that is, when microspores were isolated by blending rather than maceration, the greater number of viable microspores were easily generated (about 13 times). Among media used for microspores culture in this study, MN medium was most efficient for embryo induction and development. Total number of embryos and the number of cotyledonary embryos were highest when microspores were cultured in dark for 4 weeks, and then in light for one week. These results will be provide valuable information to set up efficient microspore culture system of hot pepper with a high frequency of embryo production, which are applicable to gene transformation and mutagenesis.

In vitro characterization of human dental pulp stem cells isolated by three different methods

  • Jang, Ji-Hyun;Lee, Hyeon-Woo;Cho, Kyu Min;Shin, Hee-Woong;Kang, Mo Kwan;Park, Sang Hyuk;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.283-295
    • /
    • 2016
  • Objectives: In this study, we characterized human dental pulp cells (HDPCs) obtained by different culture methods to establish the most suitable methodology for dental tissue engineering and regenerative endodontic applications. Materials and Methods: HDPCs were isolated by the outgrowth method (HDPCs-OG), the enzymatic digestion method (collagenase/dispase/trypsin, HDPCs-ED), or the combination of both methods (HDPCs-Combined). The expression of mesenchymal stem cell markers (CD105, CD90, and CD73) was investigated. In vitro differentiation capacities of HDPCs into adipogenic, osteogenic, and chondrogenic lineages were compared. Differentiation markers were analyzed by quantitative reverse-transcription polymerase chain reaction (RT-PCR) and western blotting. Results: Our data indicated that whole HDPCs-ED, HPDCs-OG, and HDPCs-Combined could be differentiated into adipogenic, chrondrogenic, and osteogenic cell types. However, we found that the methods for isolating and culturing HDPCs influence the differentiation capacities of cells. HDPCs-OG and HDPCs-ED were preferably differentiated into adipogenic and osteogenic cells, respectively. Differentiation markers shown by RT-PCR and western blotting analysis were mostly upregulated in the treated groups compared with the control groups. Conclusions: Our findings confirmed that cell populations formed by two different culture methods and the combined culture method exhibited different properties. The results of this study could provide an insight into regenerative endodontic treatment using HDPCs.