• Title/Summary/Keyword: inflection points

Search Result 95, Processing Time 0.028 seconds

An algorithm to simulate the nonlinear behavior of RC 1D structural members under monotonic or cyclic combined loading

  • Nouban, Fatemeh;Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.305-315
    • /
    • 2018
  • Interaction of lateral loading, combined with axial force needs to be determined with care in reinforced concrete (RC) one-dimensional structural members (1D SMs) such as beam-columns (BCs) and columns. RC 1D SMs under heavy axial loading are known to fail by brittle mode and small lateral displacements. In this paper, a macro element-based algorithm is proposed to analyze the RC 1D SMs under monotonic or cyclic combined loading. The 1D SMs are discretized into macro-elements (MEs) located between the critical sections and the inflection points. The critical sections are discretized into fixed rectangular finite elements (FRFE). The nonlinear behavior of confined and unconfined concretes and steel elements are considered in the proposed algorithm. The proposed algorithm has been validated by the results of experimental tests carried out on full-scale RC structural members. The evolution of ultimate strain at extreme compression fiber of a rectangular RC section for different orientations of lateral loading shows that the ultimate strain decreases with increasing the axial force. In the examined cases, this ultimate strain ranges from 0.0024 to 0.0038. Therefore, the 0.003 value given by ACI-318 code for ultimate strain, is not conservative and valid for the combined load cases with significant values of axial force (i.e. for the axial forces heavier than 70% of the ultimate axial force).

Effect of hematocrit on hemorheological characteristics of blood flow in a microtube (헤마토크릿에 따른 혈액의 유변학적 특성 변화)

  • Ji, Ho-Seong;Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.111-112
    • /
    • 2006
  • In order to investigate flow characteristics of blood flow in a micro tube ($100{\mu}m$ in diameter) according to hematocrit, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, a 2 head Nd:YAG laser, a 12 bit cooled CCD camera and a delay generator. Blood was supplied into the micro tube using a syringe pump. Hematocrit of blood was controlled to be 20%, 30% and 40%. The blood flow has a cell free layer near the tube wall and its thickness was changed with increasing the flow rate and hematocrit. The hemorheological characteristics such as shear rate and viscosity were evaluated using the velocity field data measured. As the flow rate increased, the blunt velocity profile in the tube center was sharpened. The viscosity of blood was rapidly increased with decreasing shear rate, especially in the region of low shear rate, changing RBC rheological properties. The variation of velocity profile and blood viscosity shows typical characteristics of Non-Newtonian fluids. On the basis of inflection points, the cell free layer and two-phase flow consisting of plasma and suspensions including RBCs were clearly discriminated.

  • PDF

A Comparative Study on the Storm Hydrograph Separation Methods for Baseflow through Field Applications (수문곡선의 기저유출분리 방법에 대한 고찰)

  • Cho, SungHyen;Moon, Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.50-59
    • /
    • 2022
  • There are several methods for separating the baseflow from the hydrograph, and graphical methods (GM) have mostly been used. GMs are those that separate the baseflow from the direct flow simply by connecting rising point with inflection point or points related to some duration from a hydrograph. Environmental tracer method (ETM) is another tool researched and developed under several conditions to estimate the groundwater recharge. The goal of this study is to separate the baseflow component from a storm hydrograph by applying various GMs and ETM, and to compare their results. The baseflow component estimated by ETM was different from the results by GMs in terms of their shapes of fluctuation and flow rates. Another important feature is that the form of the baseflow to which ETM is applied is similar to that of a storm hydrograph. This similarity is presumed to be due to the selection of tracer that respond quickly to rainfall.

Multi-objective optimization of submerged floating tunnel route considering structural safety and total travel time

  • Eun Hak Lee;Gyu-Jin Kim
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.323-334
    • /
    • 2023
  • The submerged floating tunnel (SFT) infrastructure has been regarded as an emerging technology that efficiently and safely connects land and islands. The SFT route problem is an essential part of the SFT planning and design phase, with significant impacts on the surrounding environment. This study aims to develop an optimization model considering transportation and structure factors. The SFT routing problem was optimized based on two objective functions, i.e., minimizing total travel time and cumulative strains, using NSGA-II. The proposed model was applied to the section from Mokpo to Jeju Island using road network and wave observation data. As a result of the proposed model, a Pareto optimum curve was obtained, showing a negative correlation between the total travel time and cumulative strain. Based on the inflection points on the Pareto optimum curve, four optimal SFT routes were selected and compared to identify the pros and cons. The travel time savings of the four selected alternatives were estimated to range from 9.9% to 10.5% compared to the non-implemented scenario. In terms of demand, there was a substantial shift in the number of travel and freight trips from airways to railways and roadways. Cumulative strain, calculated based on SFT distance, support structure, and wave energy, was found to be low when the route passed through small islands. The proposed model helps decision-making in the planning and design phases of SFT projects, ultimately contributing to the progress of a safe, efficient, and sustainable SFT infrastructure.

Print-Scan Resilient Curve Watermarking using B-Spline Curve Model and its 2D Mesh-Spectral Transform (B-스프라인 곡선 모델링 및 메시-스펙트럼 변환을 이용한 프린트-스캔에 강인한 곡선 워터마킹)

  • Kim, Ji-Young;Lee, Hae-Yeoun;Im, Dong-Hyuck;Ryu, Seung-Jin;Choi, Jung-Ho;Lee, Heung-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.307-314
    • /
    • 2008
  • This paper presents a new robust watermarking method for curves that uses informed-detection. To embed watermarks, the presented algorithm parameterizes a curve using the B-spline model and acquires the control points of the B-spline model. For these control points, 2D mesh are created by applying Delaunay triangulation and then the mesh spectral analysis is performed to calculate the mesh spectral coefficients where watermark messages are embedded in a spread spectrum way. The watermarked coefficients are inversely transformed to the coordinates of the control points and the watermarked curve is reconstructed by calculating B-spline model with the control points. To detect the embedded watermark, we apply curve matching algorithm using inflection points of curve. After curve registration, we calculate the difference between the original and watermarked mesh spectral coefficients with the same process for embedding. By calculating correlation coefficients between the detected and candidate watermark, we decide which watermark was embedded. The experimental results prove the proposed scheme is more robust than previous watermarking schemes against print-scan process as well as geometrical distortions.

Time Series Representation Combining PIPs Detection and Persist Discretization Techniques for Time Series Classification (시계열 분류를 위한 PIPs 탐지와 Persist 이산화 기법들을 결합한 시계열 표현)

  • Park, Sang-Ho;Lee, Ju-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.97-106
    • /
    • 2010
  • Various time series representation methods have been suggested in order to process time series data efficiently and effectively. SAX is the representative time series representation method combining segmentation and discretization techniques, which has been successfully applied to the time series classification task. But SAX requires a large number of segments in order to represent the meaningful dynamic patterns of time series accurately, since it loss the dynamic property of time series in the course of smoothing the movement of time series. Therefore, this paper suggests a new time series representation method that combines PIPs detection and Persist discretization techniques. The suggested method represents the dynamic movement of high-diemensional time series in a lower dimensional space by detecting PIPs indicating the important inflection points of time series. And it determines the optimal discretizaton ranges by applying self-transition and marginal probabilities distributions to KL divergence measure. It minimizes the information loss in process of the dimensionality reduction. The suggested method enhances the performance of time series classification task by minimizing the information loss in the course of dimensionality reduction.

Rheological Behavior of Semi-Solid Ointment Base (Vaseline) in Steady Shear Flow Fields (정상전단유동장에서 반고형 연고기제(바셀린)의 레올로지 거동)

  • Song, Ki-Won;Kim, Yoon-Jeong;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.137-148
    • /
    • 2007
  • Using a strain-controlled rheometer [Rheometrics Dynamic Analyzer (RDA II)], the steady shear flow properties of a semi-solid ointment base (vaseline) have been measured over a wide range of shear rates at temperature range of $25{\sim}60^{\circ}C$. In this article, the steady shear flow properties (shear stress, steady shear viscosity and yield stress) were reported from the experimentally obtained data and the effects of shear rate as well as temperature on these properties were discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters (yield stress, consistency index and flow behavior index). Main findings obtained from this study can be summarized as follows : (1) At temperature range lower than $40^{\circ}C$, vaseline is regarded as a viscoplastic material having a finite magnitude of yield stress and its flow behavior beyond a yield stress shows a shear-thinning (or pseudo-plastic) feature, indicating a decrease in steady shear viscosity as an increase in shear rate. At this temperature range, the flow curve of vaseline has two inflection points and the first inflection point occurring at relatively lower shear rate corresponds to a static yield stress. The static yield stress of vaseline is decreased with increasing temperature and takes place at a lower shear rate, due to a progressive breakdown of three dimensional network structure. (2) At temperature range higher than $45^{\circ}C$, vaseline becomes a viscous liquid with no yield stress and its flow character exhibits a Newtonian behavior, demonstrating a constant steady shear viscosity regardless of an increase in shear rate. With increasing temperature, vaseline begins to show a Newtonian behavior at a lower shear rate range, indicating that the microcrystalline structure is completely destroyed due to a synergic effect of high temperature and shear deformation. (3) Over a whole range of temperatures tested, the Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have an almostly equivalent ability to quantitatively describe the steady shear flow behavior of vaseline, whereas the Bingham, Casson,and Vocadlo models do not give a good ability.

Ergonomic Design of Necklace Type Wearable Device

  • Lee, Jinsil;Ban, Kimin;Choe, Jaeho;Jung, Eui S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.281-292
    • /
    • 2017
  • Objective: This study aims to identify important physical design variables in designing a necklace type wearable device, and to present design guidelines to maximize comfort that a user feels upon wearing the device. Background: Interests in fitness culture and personal health are on the rise recently. In such a situation, demand for necklace type wearable devices is projected to increase a lot, as the devices enable users to use their hands freely and to enjoy various contents through connection with mobile devices. However, the necklace type wearable device's comfort was assessed to have the lowest comfort in a running situation, where human body moves up and down and left and right more than other devices wearable on other human body parts. Therefore, the usability of a necklace type wearable device was low. In this regard, studies on identification of the variables affecting user comfort upon wearing a necklace type wearable device and on physical design direction maximizing comfort and usability are needed. Method: A pretest and a main test were carried out to draw the direction of necklace type wearable device design. In the pretest, wearing evaluation on the diverse types of devices released in the market was conducted to draw physical design variables of the devices affecting comfort. Furthermore, variables significantly affecting the comfort of a device were selected through an analysis of variance (ANOVA). In the main test, anthropometry was performed, and information on anthropometric items corresponding to the design variables selected in the pretest was acquired. Based on the pretest results and the anthropometric information in the main test, the present study produced design guidelines maximizing the comfort of a necklace type wearable device with regard to major design variables upon dynamic tasks. Results: According to the pretest results, the variables having effects on comfort were the angle of side points, width, and height. Due to interactions between variables, those need to be simultaneously considered upon designing a device. Upon dynamic tasks, the angle of side points and width of a device was designed to be smaller than mean angle of the trapezius muscle and neck width, and thus attachment to human body was high. As height was designed to be larger than mean neck front and rear point width, comfort was higher due to feeling of stability. Conclusion: Because user sensitivity to comfort was high at human body's inflection points, a device needs to be designed for users not to feel high pressure on specific body parts with the device fitting human body shape well. A design considering user's situation is also required in further studies.

Pattern Development of Waist / Abdominal Area of Obese Womem Using 3D Geometrical Model (3D모델을 이용한 비만체형 여성의 허리-배 부위 패턴 특성 연구)

  • Kim, So-Young;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.1018-1026
    • /
    • 2005
  • Recent development of 3D scanner and software is regarded as a promising method of acquiring replicas from human body indirectly. It would be very helpful if we could predict the characteristics of 2D pattern from the simple parameters related to 3D shape for ordinary user. Therefore, in this study, investigation of 2D pattern of waist/abdominal area from the 3D geometrical model was conducted for the pattern development of waist nipper. To create body models and develop the surface of them, one ortho commonly used CAD/CAM program, IDEAS(UGS-plm solutions, USA) was used. As for the size of the models, the width, thickness, and circumference ranges of adult women's torso reported in National Anthropometric Survey of Korea (1997) were used as a standard model. Seven size variations were made by changing the width of the waist only, from 19 cm to 40 cm. Therefore, simulated body models include not only the normal body but also obese body who has wider waist and abdomen width than hip width. As results, it was found that the curvature of the unfolded 2D pattern around the abdominal area decreases as the waist width increases. As the width of the waist increases more and more, so that the comparative ratios around the torso becomes in abnormal ranges, there appears inflection points and the direction of curvature was changed. 2D Patterns obtained in this research were quantified by curvature, length of the curve and angle of deflection in the reference frame box for the convenience of the actual pattern making process. It was also possible to find that the shape of patterns of abnormal body resulted in a quite interesting change in the curves of 2D pattern, which could be applied to the custom made waist nipper for obese women.

A Study on the Feature Extraction of Strokes using the Maximum Block Methode (최대 블록화 방법을 이용한 묵자획 특징 추출에 관한 연구)

  • Kim, Ui-Jeong;Kim, Tae-Gyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.4
    • /
    • pp.1141-1151
    • /
    • 1997
  • In this paper the Maximum Block Method is suggested for the Feature Extraction of stokes of off-line Chinese characters.The Maximum Block Method is a technique which enlarges the block from the first found pixel that wxtracts the skeleton and features of the input characters.The maximum Block mthod is an adequate technique for the correct extraction of the features since the exsting thining methods have shortcomings of making the feature extraction difficult from the distoritions generated from the effiects of the parial noises,inflection points and blemishes. The printed outputs and chinese books of the middle and high school students,and other materials are used for the test.It was found that the Maxthod is also an effective technique for the extraction of skeleton line and features,which is the preoprocessing of the pattern recognition,for the Korean chracters and English as well as chinese chracters.

  • PDF