• 제목/요약/키워드: inflatable panel

검색결과 2건 처리시간 0.018초

Deflection prediction of inflatable flat panels under arbitrary conditions

  • Mohebpour, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.853-865
    • /
    • 2013
  • Inflatable panels made of modern and new textile materials can be inflated at high pressure to have a high mechanical strength. This paper is based on the finite element method as a general solution to determine the characteristics of deformed inflatable panels at high pressure in various end and loading conditions. Proposed method is based on the construction of weak form of formulation and application of Reduced Integration Element method (RIE) to solve the numerical problem of shear locking. The numerical results are validated as an outcome of comparison with other published results.

개량형 가동보에 적용하기 위한 패널형 유리섬유보강 폴리머 복합재료 클램핑 플레이트의 환경노출 성능 (Environmental Exposure Performance of a Panel-Type Glass-Fiber-Reinforced Polymer Composite Clamping Plate for an Improved Moveable Weir)

  • 유성열;전종찬;신형진;박찬기
    • 한국농공학회논문집
    • /
    • 제59권5호
    • /
    • pp.73-81
    • /
    • 2017
  • The improved movable weir supplements the advantages and disadvantages of the rubber weir and the conduction gate. It consists of a stainless steel gate, air bags, and a steel clamping plate. The stainless steel gate is the main body of the weir, and the inflatable rubber sheet serves to support the steel gate. The steel clamping plate is typically in direct continuous contact with water, but this leads to corrosion issues that can reduce the life of the entire movable weir. In this study, a panel-type glass-fiber-reinforced polymer (GFRP) clamping plate was designed and fabricated. The test results showed that the flexural load of the panel-type GFRP composite clamping plate was over twice that of the wings type GFRP clamping plate. The lowest moisture absorption value was obtained upon exposure to tap water, and exposure to other solutions showed similar values. Additionally, flexural load testing after exposure to an accelerated environment found the lowest residual loads of 80.51 % and 78.50 % at 50 and 100 days, respectively, for exposure to a $CaCl_2$ solution, while exposure to other environments showed residual failure loads of over 80 % at both 50 and 100 days.