• Title/Summary/Keyword: inflammatory mediator

Search Result 208, Processing Time 0.031 seconds

Anti-Inflammatory Effects of Rice Bran Ethanol Extract in Murine Macrophage RAW 264.7 Cells (미강에탄올추출물의 RAW264.7 세포에서 항염증효과)

  • Park, Jeong-Suk;Kim, Mi-Hye
    • YAKHAK HOEJI
    • /
    • v.55 no.6
    • /
    • pp.456-461
    • /
    • 2011
  • The aim of the present study is to investigate the anti-inflammatory effect of a Rice Bran Ethanol Extract (RBE). Inflammation, such as a bacterial infection in vivo metabolites, such as external stimuli or internal stimuli to the defense mechanisms of the biological tissue a variety of intracellular regulatory factors deulin inflammatory TNF-${\alpha}$, IL-$1{\beta}$, IL-6, IL-8, such as proinflammatory cytokines, prostagrandin, lysosomal enzyme, free radicals are involved in a variety of mediators. The present study was designed to determine the effect of the RBE on pro-inflammatory factors such as NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 in lipopolysaccharide (LPS) - stimulated RAW264.7 macrophages cells. The cell toxicity was determined by MTS assay. To evaluate of anti-inflammatory effect of RBE, amount of NO was measured using the NO detection kit and the iNOS expression was measured by reverse transcriptase polymerase chain reaction (RT-PCR). And proinflammatory cytokines were measured by ELISA kit. As a result, the RBE reduced NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 production without cytotoxicity. Our results suggest that the RBE may have an anti-inflammatory property through suppressing inflammatory mediator productions and appears to be useful as an anti-inflammatory material.

Inflammatory mediator regulation of the Zizyphus jujube leaf fractions in the LPS-stimulated Raw264.7 mouse machrophage (LPS로 염증이 유도된 Raw 264.7 대식세포에서 대추(Zizyphus jujube) 잎 분획물의 염증매개물질 억제)

  • Kim, Ye Jin;Son, Dae-Yeul
    • Food Science and Preservation
    • /
    • v.21 no.1
    • /
    • pp.114-120
    • /
    • 2014
  • Zizyphus jujube leaf fractions (ZLFs) showed no cytotoxic effects of up to $100{\mu}g/mL$, while the anti-inflammatory effects of ZLFs were analyzed by checking the productions of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), cyclooxygenase-2 (COX-2), and inflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 in the lipopolysaccharide (LPS)-stimulated Raw264.7 macrophage up to the concentration of $100{\mu}g/mL$. ZLFs ($100{\mu}g/mL$) demonstrated a strong anti-inflammatory activity that reduced 61~85% of NO and 71~100% of $PGE_2$ production in the LPS-stimulated Raw264.7 macrophage. Even the low ZLFs concentration of $1{\mu}g/mL$ have reduced NO and $PGE_2$ production by 34~64%. Expressions of COX-2 protein were also effectively inhibited by the ZLFs. Furthermore, the TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 production were significantly suppressed through the treatment of ZLFs at concentrations of 1, 10, and $100{\mu}g/mL$. In the order of the Zizyphus jujube leaf water fraction (ZLWF) < buthanol fraction (ZLBF) < ethyl acetate fraction (ZLEF) showed anti-inflammatory activity. In particular, the ethyl acetate fraction ZLEF at $100{\mu}g/mL$ showed an excellent anti-inflammatory activity by reducing the production of NO, $PGE_2$, COX-2, and inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, IL-6) in the level of Raw264.7 macrophage without LPS-stimulation or even better. The results of our study suggest the potential of ZLEF for use as an excellent ant-inflammatory inhibiting mediator and may be used as a therapeutic approach to various inflammatory diseases.

Anti-inflammatory Effect of Quercus Salicina in IFN-${\gamma}$/LPS-stimulated Mouse Peritoneal Macrophage

  • Cho, Kyung-Hee;Choi, Jae-Hyuk;Jeon, Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.540-545
    • /
    • 2011
  • Quercus salicina has been widely used as a traditional medicine for the treatment of various diseases. In macrophages, nitric oxide (NO) is released as an inflammatory mediator and has been proposed to be an important modulator of many pathophysiological conditions in inflammation. In the present study, the inhibitory effect of methanolic extracts of Q. salicina (QSM) on NO production in LPS-stimulated mouse (C57BL/6) peritoneal macrophages was investigated. QSM suppressed NO production without notable cytotoxiciy. QSM also exhibited down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression via attenuation of NF-${\kappa}B$ translocation to nucleus in rIFN-${\gamma}$ and LPS stimulated mouse peritoneal macrophages. The present study strongly suggest that Q. salicina may be beneficial in diseases which related to macrophage-mediated inflammatory disorders.

Facile Preparation of 2-Arylbenzo[b]furan Molecules and Their Anti-inflammatory Effects

  • Hwang, Jung-Woon;Choi, Da-Hye;Jeon, Jae-Ho;Kim, Jin-Kyung;Jun, Jong-Gab
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.965-970
    • /
    • 2010
  • An efficient and practical preparation of 2-arylbenzo[b]furan molecules including natural egonol, XH-14, ailanthoidol, and unnatural derivatives is demonstrated using Sonogashira coupling, iodine induced cyclization and Wittig reaction. Anti-inflammatory effects of the prepared benzo[b]furans were examined in lipopolysaccharide (LPS)-stimulated RAW 264-7 macrophages. The results showed that ailanthoidol, XH-14 and three other unnatural derivatives (9-10, 13) inhibited significantly the production of inflammatory mediator nitric oxide without showing cytotoxicity.

Quinic Acid Alleviates Behavior Impairment by Reducing Neuroinflammation and MAPK Activation in LPS-Treated Mice

  • Yongun Park;Yunn Me Me Paing;Namki Cho;Changyoun Kim;Jiho Yoo;Ji Woong Choi;Sung Hoon Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.309-318
    • /
    • 2024
  • Compared to other organs, the brain has limited antioxidant defenses. In particular, the hippocampus is the central region for learning and memory and is highly susceptible to oxidative stress. Glial cells are the most abundant cells in the brain, and sustained glial cell activation is critical to the neuroinflammation that aggravates neuropathology and neurotoxicity. Therefore, regulating glial cell activation is a promising neurotherapeutic treatment. Quinic acid (QA) and its derivatives possess anti-oxidant and anti-inflammatory properties. Although previous studies have evidenced QA's benefit on the brain, in vivo and in vitro analyses of its anti-oxidant and anti-inflammatory properties in glial cells have yet to be established. This study investigated QA's rescue effect in lipopolysaccharide (LPS)-induced behavior impairment. Orally administering QA restored social impairment and LPS-induced spatial and fear memory. In addition, QA inhibited proinflammatory mediator, oxidative stress marker, and mitogen-activated protein kinase (MAPK) activation in the LPS-injected hippocampus. QA inhibited nitrite release and extracellular signal-regulated kinase (ERK) phosphorylation in LPS-stimulated astrocytes. Collectively, QA restored impaired neuroinflammation-induced behavior by regulating proinflammatory mediator and ERK activation in astrocytes, demonstrating its potential as a therapeutic agent for neuroinflammation-induced brain disease treatments.

Chitin from Cuttlebone Activates Inflammatory Cells to Enhance the Cell Migration

  • Lim, Sung Cil;Lee, Ki-Man;Kang, Tae Jin
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.333-338
    • /
    • 2015
  • Our previous report showed that the extract from cuttlebone (CB) had wound healing effect in burned lesion of rat and the extract was identified as chitin by HPLS analysis. We herein investigated the morphology in CB extract using scanning electron microscope (SEM). Chitin was used as a control. There is no difference in morphology between CB extract and chitin. We also assessed the role of CB extract on the production of inflammatory mediators using murine macrophages and the migration of inflammatory cells. The extract induced the production of nitric oxide (NO) in macrophages. While the extract of CB itself stimulated macrophages to increase the expression of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6, CB extract suppressed the production of those cytokines by LPS. CB extract also induced the production of mouse IL-8 which is related to the cell migration, and treatment with CB enhanced fibroblast migration and invasion. Therefore, our results suggest that CB activates inflammatory cells to enhance the cell migration.

Anti-inflammatory effect of indole compound, IND-6 in LPS-stimulated RAW 264.7 murine macrophage cell line

  • Park, Young-Mi;Kim, In-Tae;Jung, Jin-Hyun;Mun, Han-Seo;Lee, Kyung-Tae
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.209.2-210
    • /
    • 2003
  • Nitric oxide (NO) and prostagladins(PGs) produced by inducible nitric oxide synthase(iNOS) and cyclooxygenase(COX-2) are known as inflammatory mediator. Modulation of these enzymes, induced by many stimuli(LPS, IFN-gamma, TNF-alpha, phorbol ester, etc), is a potent strategy as treatment of inflammatory diseases. Treatment of murine macrophage RAW 264.7 cell line with indole compound(IND-6) markedly reduced lipopolysacchride(LPS) stimulated NO production in a concentration-related manner. (omitted)

  • PDF

Puerariae flos inhibits inflammatory responses in interferon-γ and lipopolysaccharide-stimulated mouse peritoneal macrophages

  • Hong, Seung-Heon;Kim, Hong-Joon;Cha, Dong-Seok;Lee, Ju-Young;Na, Ho-Jeong
    • Advances in Traditional Medicine
    • /
    • v.7 no.3
    • /
    • pp.229-234
    • /
    • 2007
  • In macrophages, nitric oxide (NO) is released as an inflammatory mediator and has been proposed to be an important modulator of many pathophysiological conditions including inflammation. In this study, we have examined the inhibition effects of NO production by 85% methanol extract of the flower of Pueraria thunbergiana (PF) in mouse macrophages. Extract of PF (1, 10, 100 ${\mu}g/ml$) inhibited NO production, inducible NO synthase and cyclooxygenase-2 expression in interferon-g and lipopolysaccharide-stimulated mouse peritoneal macrophages and it had no cytotoxicity. These data suggest that 85% methanol extract of PF might be useful in controlling macrophages mediated inflammatory disease.

Anti-inflammatory Activity of Veronica peregrina

  • Jeon, Hoon
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.141-146
    • /
    • 2012
  • Veronica peregrina (Scrophylariaceae) has been widely used as a Korean traditional medicine for the treatment of various pathological conditions including infection, hemorrhage and gastric ulcer. In the current study, we investigated the inhibitory effect of methanolic extracts of V. Peregrina (VPM) on the LPS-mediated nitric oxide (NO) production in mouse (C57BL/6) peritoneal macrophages. NO production was significantly down-regulated by the treatment of VPM dose dependently. To evaluate the mechanism of the inhibitory action of VPM on NO production, we performed iNOS enzyme activity assay and checked the change of inducible nitric oxide synthase (iNOS) levels by Western blotting. Although VPM did not affect iNOS enzyme activity, iNOS protein expression was attenuated by VPM indicating VPM inhibits NO production via suppression of iNOS enzyme expression. In addition, VPM attenuated the expression of another pro-inflammatory mediator such as cyclooxygenase-2 (COX-2) in a dose dependent manner. We also found that VPM can reduce trypsin-induced paw edema in mice. Based on this study, we suggest that V. peregrina may be beneficial in diseases which related to macrophage-mediated inflammatory disorders.

Inhibitory effect of Gentianae Radix MeOH extract on pro-inflammatory mediator production in lipopolysaccharide activated Raw 264.7 cells (용담초(龍膽草) 추출물이 LPS로 활성화된 Raw 264.7 cell에서의 pro-inflammatory mediator에 미치는 영향)

  • Kim, Mi-Seon;Cho, Won-Joon;Hwang, Sun-Yi;Lee, Jong-Rok;Park, Sook-Jahr;Kim, Sang-Chan;Jee, Seon-Young
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.2
    • /
    • pp.28-38
    • /
    • 2008
  • In traditional oriental medicine, Gentianae Radix has been used clinically for clearing away 'heat', removing dampness and purging fire in the liver and gall bladder. However, there has been a lack of studies regarding the effects of Gentianae Radix on the immunological activities. The present study was conducted to evaluate the effect of Gentianae Radix on the regulatory effects of cytokines and nitric oxide(NO) for the immunological activities in Raw 264.7 cells. After the treatment of Gentianae Radix MeOH extract, cell viability was measured by MTT assay, and NO production was monitored by measuring the nitrite content in culture medium. The expression of COX-2 and iNOS was determined by immunoblot analysis, and the content of levels of cytokines in media was analyzed by ELISA kit. Results provided evidence that Gentianae Radix inhibited the production of nitrite and nitrate (NO), inducible nitric oxide synthase (iNOS), $interleukin-l{\beta}$ $(IL-l{\beta})$ and IL-6, and the activation of phospholylation of inhibitor ${\kappa}B{\alpha}$ ($p-I {\kappa}B{\alpha}$) in Raw 264.7 cells activated with lipopolysaccharide (LPS). These findings suggest that Gentianae Radix can make anti-inflammatory effect, which may playa role in adjunctive therapy.

  • PDF