DOI QR코드

DOI QR Code

Facile Preparation of 2-Arylbenzo[b]furan Molecules and Their Anti-inflammatory Effects

  • Hwang, Jung-Woon (Department of Chemistry and Institute of Applied Chemistry) ;
  • Choi, Da-Hye (Department of Chemistry and Institute of Applied Chemistry) ;
  • Jeon, Jae-Ho (Institute of Natural Medicine, Hallym University) ;
  • Kim, Jin-Kyung (Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University) ;
  • Jun, Jong-Gab (Department of Chemistry and Institute of Applied Chemistry)
  • Published : 2010.04.20

Abstract

An efficient and practical preparation of 2-arylbenzo[b]furan molecules including natural egonol, XH-14, ailanthoidol, and unnatural derivatives is demonstrated using Sonogashira coupling, iodine induced cyclization and Wittig reaction. Anti-inflammatory effects of the prepared benzo[b]furans were examined in lipopolysaccharide (LPS)-stimulated RAW 264-7 macrophages. The results showed that ailanthoidol, XH-14 and three other unnatural derivatives (9-10, 13) inhibited significantly the production of inflammatory mediator nitric oxide without showing cytotoxicity.

Keywords

References

  1. Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Comprehensive Heterocyclic Chemistry II; Pergamon Press: Oxford, UK, 1996; Vol. 2, pp 259-321.
  2. Navarro, E.; Alanso, S. J.; Trujillo, J.; Jorge, E.; Perez, C. J. Nat. Prod. 2001, 64, 134. https://doi.org/10.1021/np9904861
  3. Ikeda, R.; Nagao, T.; Okabe, H.; Nakano, Y.; Matsunaga, H.; Katano, M.; Mori, M. Chem. Pharm. Bull. 1998, 46, 871. https://doi.org/10.1248/cpb.46.871
  4. Day, S. H.; Chiu, N. Y.; Tsao, L. T.; Wang, J. P.; Lin, C. N. J. Nat. Prod. 2000, 63, 1560. https://doi.org/10.1021/np000191j
  5. Craigo, J.; Callahan, M.; Huang, R. C. C.; DeLucia, A. L. Antiviral Res. 2000, 47, 19. https://doi.org/10.1016/S0166-3542(00)00089-9
  6. Zacchino, S.; Rodriguez, G.; Pezzenati, G.; Orellana, G.; Enriz,R.; Gonzalez, S. M. J. Nat. Prod. 1997, 60, 659. https://doi.org/10.1021/np9605504
  7. Gordaliza, M.; Castro, M.; del Corral, J. M.; Lopez-Vazquez, M.;Feliciano, A. S.; Faircloth, G. T. Bioorg. Med. Chem. Lett. 1997, 7, 2781. https://doi.org/10.1016/S0960-894X(97)10072-5
  8. Chen, C. C.; Hsin, W. C.; Ko, F. N.; Huang, Y. L.; Ou, J. C.; Teng,C. M. J. Nat. Prod. 1996, 59, 1149. https://doi.org/10.1021/np960443+
  9. Silva, D. H. S.; Pereira, F. C.; Zanoni, M. V. B.; Yoshida, M.Phytochemistry 2001, 57, 437. https://doi.org/10.1016/S0031-9422(00)00477-5
  10. Ward, R. S. Nat. Prod. Rep. 1995, 12, 183. https://doi.org/10.1039/np9951200183
  11. Brader, G.; Greger, H.; Bacher, M.; Kalchhauser, H.; Hofer, O.;Vajrodaya, S. J. Nat. Prod. 1998, 61, 1482. https://doi.org/10.1021/np9801965
  12. Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 10292. https://doi.org/10.1021/jo051299c
  13. Lin, S.-Y.; Chen, C.-L.; Lee, Y.-J. J. Org. Chem. 2003, 68,2968. https://doi.org/10.1021/jo020653t
  14. Kao, C.-L.; Chern, J.-W. J. Org. Chem. 2002, 67, 6772. https://doi.org/10.1021/jo0258960
  15. Katritzky, A. R.; Ji, Y.; Fang, Y.; Prakash, I. J. Org. Chem. 2001,66, 5613. https://doi.org/10.1021/jo010278p
  16. Lutjens, H.; Scammells, P. J. Tetrahedron Lett. 1998, 39, 6581. https://doi.org/10.1016/S0040-4039(98)01371-9
  17. Choi, D. H.; Hwang, J. W.; Lee, H. S.; Yang, D. M.; Jun, J.-G. Bull. Korean Chem. Soc. 2008, 29, 1594. https://doi.org/10.5012/bkcs.2008.29.8.1594
  18. Chang, H. M.; Cheng, K. P.; Choang, T. F.; Chow, H. F.; Chui, K.Y.; Hon, P. M.; Tan, F. W. L.; Yang, Y.; Zhong, Z. P. J. Org. Chem.1990, 55, 3537. https://doi.org/10.1021/jo00298a029
  19. Bang, H. B.; Han S. Y.; Choi, D. H.; Yang D. M.; Hwang, J. W.;Lee, H. S.; Jun, J.-G. Synth. Commun. 2009, 39, 506. https://doi.org/10.1080/00397910802399924
  20. Bang, H. B.; Han S. Y.; Choi, D. H.; Hwang, J. W.; Jun, J.-G. Arkivoc2009, (ii), 112.
  21. Sheen, W.-S.; Tsai, I.-L.; Teng, C.-M.; Chen, I.-S. Phytochemistry1994, 36, 213. https://doi.org/10.1016/S0031-9422(00)97039-0
  22. Vernooy, J. H.; Dentener, M. A.; Suylen, R. J. van.; Buurman,W. A.; Wouters, E. F. Am. J. Respir Cell Mol. Biol. 2002, 26, 152. https://doi.org/10.1165/ajrcmb.26.1.4652
  23. Sakagami, T.; Vella, J.; Dixon, M. F.; Rourke, J.; Radcliff, F.; Sutton, P.; Shimoyama, T.; Beagley, K.; Lee, A. Infect. Immun. 1997, 65, 3310.
  24. Kwon, K. H.; Murakami, A.; Hayashi, R.; Ohigashi, H. Biochem. Biophys. Res. Commun. 2005, 337, 647. https://doi.org/10.1016/j.bbrc.2005.09.107

Cited by

  1. Pd-Catalyzed Tandem Chemoselective Synthesis of 2-Arylbenzofurans using Threefold Arylating Triarylbismuth Reagents vol.2013, pp.4, 2012, https://doi.org/10.1002/ejoc.201201314
  2. Ailanthoidol Derivatives and their Anti-inflammatory Effects vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.1907
  3. A new series of Salicylic acid derivatives as non-saccharide α-glucosidase inhibitors and antioxidants pp.1347-5215, 2018, https://doi.org/10.1248/bpb.b18-00661
  4. Benzofuran–appended 4-aminoquinazoline hybrids as epidermal growth factor receptor tyrosine kinase inhibitors: synthesis, biological evaluation and molecular docking studies vol.33, pp.1, 2018, https://doi.org/10.1080/14756366.2018.1510919
  5. Chemical Compounds from Swertia bimaculata vol.54, pp.5, 2018, https://doi.org/10.1007/s10600-018-2523-8
  6. Synthesis of New 2-Arylbenzo[b]furan Derivatives via Palladium-Catalyzed Suzuki Cross-Coupling Reactions in Aqueous Media vol.23, pp.10, 2018, https://doi.org/10.3390/molecules23102450
  7. Ailanthoidol suppresses lipopolysaccharide‐stimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice vol.112, pp.12, 2010, https://doi.org/10.1002/jcb.23312
  8. Ester Derivatives of Kojic Acid and Polyphenols Containing Adamantane Moiety with Tyrosinase Inhibitory and Anti-inflammatory Properties vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1411
  9. Palladium-catalyzed cross-couplings of functionalized 2-bromobenzofurans for atom-economic synthesis of 2-arylbenzofurans using triarylbismuth reagents vol.53, pp.21, 2010, https://doi.org/10.1016/j.tetlet.2012.03.059
  10. Rapid Access to Benzofuran‐Based Natural Products through a Concise Synthetic Strategy vol.2016, pp.12, 2010, https://doi.org/10.1002/ejoc.201600154
  11. Chemotaxonomic significance of phenylpropanoids from Styrax suberifolius Hook. Et Arn vol.78, pp.None, 2018, https://doi.org/10.1016/j.bse.2018.03.006
  12. Palladium-catalyzed cross-coupling reaction of alkenyl aluminums with 2-bromobenzo[b]furans vol.10, pp.33, 2010, https://doi.org/10.1039/d0ra02984j
  13. Crystal structure of 1-(6-hydroxy-2-phenylbenzofuran-5-yl)ethan-1-one, C16H12O3 vol.235, pp.6, 2010, https://doi.org/10.1515/ncrs-2020-0330
  14. Crystal structure of 1-(6-hydroxy-2-phenylbenzofuran-5-yl)ethan-1-one, C16H12O3 vol.235, pp.6, 2010, https://doi.org/10.1515/ncrs-2020-0330
  15. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors vol.37, pp.1, 2010, https://doi.org/10.1080/14756366.2021.1976772