• Title/Summary/Keyword: inflammatory genes

Search Result 575, Processing Time 0.032 seconds

Protective Effect of HP08-0106 on Ligature-induced Periodontitis in Rats

  • Choi, Hwa-Jung;Cho, Hyoung-Kwon;Soh, Yun-Jo
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.187-194
    • /
    • 2011
  • Periodontitis is an inflammatory disorder of the periodontium, characterized by destruction of the tooth supporting tissues including alveolar bone and mediated by various pro-inflammatory mediators. Here, we demonstrated that HP08-0106, composed of four crude drugs-Gardenia jasminoides Grandiflora, Angelica gigas Nakai, Rehmannia glutinosa, and Schizonepeta tenuifolia in a weight ratio of 2:2:1:2, perturbs inflammatory responses, osteoclast formation in LPS-induced RAW 264.7 cells and alveolar bone resorption in ligature-induced periodontitis. HP08-0106 decreased the protein level of iNOS and COX2 as well as the secreted level of IL-$1{\beta}$, indicating that HP08-0106 has antiinflammatory effects. HP08-0106 also inhibited the expression of genes associated with osteoclastogenesis including c-Fos, MMP-9 and TRAP. Moreover, HP08-0106 exhibited a protective effect from alveolar bone loss in ligature-induced periodontitis animal models. Our results strongly suggest that HP08-0106 represent an important therapeutic tool to treat inflammatory disorders associated with bone loss such as periodontitis.

Inhibition of Chronic Skin Inflammation by Topical Anti-inflammatory Flavonoid Preparation, Ato $Formula^{\circledR}$

  • Lim, Hyun;Son, Kun-Ho;Chang, Hyeun-Wook;Kang, Sam-Sik;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.29 no.6
    • /
    • pp.503-507
    • /
    • 2006
  • Flavonoids are known as natural anti-inflammatory agents. In this investigation, an anti-inflammatory potential of new topical preparation (SK Ato $Formula^{\circledR}$) containing flavonoid mixtures from Scutellaria baicalensis Georgi roots and Ginkgo biloba L. leaves with an extract of Gentiana scabra Bunge roots was evaluated in an animal model of chronic skin inflammation. Multiple 12-O-tetradecanoylphorbol-13-acetate treatments for 7 consecutive days on ICR mouse ear provoked a chronic type of skin inflammation: dermal edema, epidermal hyperplasia and infiltration of inflammatory cells. When topically applied in this model, this row formulation $(5-20\;{\mu}L/ear/treatment)$ reduced these responses. Furthermore, it inhibited prostaglandin $E_2$ generation (17.1-33.3%) and suppressed the expression of proinflammatory genes, cyclooxygenase-2 and $interleulin-1{\beta}$ in the skin lesion. Although the potency of inhibition was lower than that of prednisolone, all these results suggest that Ato $Formula^{\circledR}$ may be beneficial for treating chronic skin inflammatory disorders such as atopic dermatitis.

Carboxymethyl Chitosan Promotes Migration and Inhibits Lipopolysaccharide-Induced Inflammatory Response in Canine Bone Marrow-Derived Mesenchymal Stem Cells

  • Ryu, Ho-Sung;Ryou, Seong-Hwan;Jang, Min;Ku, Sae-Kwang;Kwon, Young-Sam;Seo, Min-Soo
    • Journal of Veterinary Clinics
    • /
    • v.38 no.6
    • /
    • pp.261-268
    • /
    • 2021
  • The study was conducted to evaluate the effects of carboxymethyl chitosan (CMC) on proliferation, migration, and lipopolysaccharide (LPS)-induced inflammatory response in canine bone marrow-derived mesenchymal stem cells (BMSCs). The proliferation and migration of BMSCs were examined after treatment with CMC. The effect of CMC on the mRNA expression of inflammatory cytokines, such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β, was also evaluated by reverse transcription polymerase chain reaction (RT-PCR). In the proliferation assay, no significant changes were found at all CMC concentrations compared with controls. The migration assay showed that CMC dose-dependently stimulated the migration of BMSCs in normal and LPS-treated conditions. RT-PCR showed that TNF-α and IL-10 expressions were suppressed in the BMSCs after CMC treatment. However, other genes were not affected. Taken together, CMC promoted BMSC migration and inhibited TNF-α and IL-10. Therefore, CMC may be possible to regulate wound healing when mesenchymal stem cells are applied in inflammatory diseases.

A Study on the Anti-Inflammatory Effect and Improvement of Dyslipidemia on Hyangsapyeongwi-san (향사평위산의 항염증 효과 및 이상지질혈증 개선 작용에 대한 연구)

  • Han-nah Chae;Se-eun Chun;Yong-jeen Shin
    • The Journal of Internal Korean Medicine
    • /
    • v.44 no.3
    • /
    • pp.523-535
    • /
    • 2023
  • Objectives: This study aims to investigate the anti-inflammatory effect and improvement of dyslipidemia on Hyangsapyeongwi-san. Methods: In this study, HUVEC cells were cultured and treated with Hyangsapyeongwi-san to measure intracellular KLF2, eNOS, MCP-1, ICAM-1, and VCAM-1 gene expression levels related to anti-inflammation. The weight of experimental animals administered with Hyangsapyeongwi-san was measured, blood samples were biochemically analyzed, and liver tissues were reviewed to research histological changes. Results: Gene expression levels in the cells treated with Hyangsapyeongwi-san generally showed a meaningful anti-inflammatory effect. The body weight of the experimental animals decreased, and total cholesterol, triglyceride, and LDL-cholesterol in the blood generally declined while HDL-cholesterol tended to increase. Fat accumulation between hepatocytes was also reduced after the administration of Hyangsapyeongwi-san. Conclusions: This study confirmed that Hyangsapyeongwi-san has the effect of suppressing vascular inflammatory responses through the regulation of genes involved in the vascular inflammatory process and improving dyslipidemia through the reduction of blood lipids and weight loss.

RNA-seq profiling of skin in temperate and tropical cattle

  • Morenikeji, Olanrewaju B.;Ajayi, Oyeyemi O.;Peters, Sunday O.;Mujibi, Fidalis D.;De Donato, Marcos;Thomas, Bolaji N.;Imumorin, Ikhide G.
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.141-158
    • /
    • 2020
  • Skin is a major thermoregulatory organ in the body controlling homeothermy, a critical function for climate adaptation. We compared genes expressed between tropical- and temperate-adapted cattle to better understand genes involved in climate adaptation and hence thermoregulation. We profiled the skin of representative tropical and temperate cattle using RNA-seq. A total of 214,754,759 reads were generated and assembled into 72,993,478 reads and were mapped to unique regions in the bovine genome. Gene coverage of unique regions of the reference genome showed that of 24,616 genes, only 13,130 genes (53.34%) displayed more than one count per million reads for at least two libraries and were considered suitable for downstream analyses. Our results revealed that of 255 genes expressed differentially, 98 genes were upregulated in tropically-adapted White Fulani (WF; Bos indicus) and 157 genes were down regulated in WF compared to Angus, AG (Bos taurus). Fifteen pathways were identified from the differential gene sets through gene ontology and pathway analyses. These include the significantly enriched melanin metabolic process, proteinaceous extracellular matrix, inflammatory response, defense response, calcium ion binding and response to wounding. Quantitative PCR was used to validate six representative genes which are associated with skin thermoregulation and epithelia dysfunction (mean correlation 0.92; p < 0.001). Our results contribute to identifying genes and understanding molecular mechanisms of skin thermoregulation that may influence strategic genomic selection in cattle to withstand climate adaptation, microbial invasion and mechanical damage.

Interaction of genetic background and exercise training intensity on endothelial function in mouse aorta

  • Kim, Seung Kyum;Avila, Joshua J.;Massett, Michael P.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.53-68
    • /
    • 2020
  • The purpose of this study was to characterize the genetic contribution to endothelial adaptation to exercise training. Vasoreactivity was assessed in aortas from four inbred mouse strains (129S1, B6, NON, and SJL) after 4 weeks of moderate intensity continuous exercise training (MOD), high intensity interval training (HIT) or in sedentary controls (SED). Intrinsic variations in endothelium-dependent vasorelaxation (EDR) to acetylcholine (ACh) as well as vasocontractile responses were observed across SED groups. For responses to exercise training, there was a significant interaction between mouse strain and training intensity on EDR. Exercise training had no effect on EDR in aortas from 129S1 and B6 mice. In NON, EDR was improved in aortas from MOD and HIT compared with respective SED, accompanied by diminished responses to PE in those groups. Interestingly, EDR was impaired in aorta from SJL HIT compared with SED. The transcriptional activation of endothelial genes was also influenced by the interaction between mouse strain and training intensity. The number of genes altered by HIT was greater than MOD, and there was little overlap between genes altered by HIT and MOD. HIT was associated with gene pathways for inflammatory responses. NON MOD genes showed enrichment for vessel growth pathways. These findings indicate that exercise training has non-uniform effects on endothelial function and transcriptional activation of endothelial genes depending on the interaction between genetic background and training intensity.

Effects of Allicin on Cytokine Production Genes of Human Peripheral Blood Mononuclear Cells (마늘의 Allicin이 사람 단핵세포의 사이토카인 생산 유전자의 발현에 미치는 영향)

  • 박란숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.3
    • /
    • pp.191-196
    • /
    • 2002
  • The effect of allicin, the major component of garlic (Allium sativum), on the gene expression profiles of peripheral blood mononuclear cells from healthy donors was analyzed. DNA microarray which can detect expression signal of 862 genes revealed that allicin induced the expression of cytokine, chemokine, and immune-related genes in peripheral blood mononuclear cells. In contrast, allicin repressed the expression of adaptive immune-related genes, which are expressed in T helper 1 Iymphocytes. Simultaneous inhibitory and stimulatory effects of allicin were found on inflammatory cells. It is likely that allicin down-regulated the expression of specific genes that were previously up-regulated in resting cells, suggesting a new mechanism by which they exert positive and negative effect. Considering the broad and renewed interest in allicin, the profiles we describe here will be useful in designing more specific and efficient treatment strategies.

Comprehensive Expression Analysis of Triterpenoid Biosynthesis Genes Using Pac-Bio Sequencing and rnaSPAdes assembly in Codonopsis lanceolata

  • Ji-Nam Kang;Si Myung Lee;Mi-Hwa Choi;Chang-Kug Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.253-253
    • /
    • 2022
  • Codonopsis lanceolata (C. lanceolata) has been widely used in East Asia as a traditional medicine to treat various diseases such as bronchitis, convulsions, cough, obesity, and hepatitis. C. lanceolata belonging to Campanulaceae contains bioactive compounds such as polyphenols, saponins, and steroids. However, despite the pharmacological significance of C. lanceolata, the genetic information of this plant is limited and there are few studies of its transcriptome. In this study, we constructed a unigene set of C. lanceolata using Pac-Bio sequencing. Furthermore, the reads generated from Pac-bio and Illumina sequencing were mixed and assembled using rnaSPAdes. All genes involved in the triterpenoid pathway, a major bioactive compounds of C. lanceolata, were searched from the two unigene sets and the expression profiles of these genes were analyzed. The results showed that lupeol, beta-amyrin, and dammarenediol synthesis genes were activated in the leaves and roots of C. lanceolata. In particular, the expression of genes related to lupeol synthesis was relatively high, suggesting that the main triterpenoid of C. lanceolata is lupeol. Transcriptome studies related to lupeol synthesis in C. lanceolata have been rarely reported. Lupeol has been reported to have pharmacological effects such as anti-inflammatory, anti-cancer, and anti-bacterial. This study suggests the importance of C. lanceolata as a lupeol producing plant.

  • PDF

North American ginseng influences adipocyte-macrophage crosstalk regulation of inflammatory gene expression

  • Garbett, Jaime;Wilson, Sarah A.F.;Ralston, Jessica C.;Boer, Anna A. De;Lui, Ed M.K.;Wright, David C.;Mutch, David M.
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2016
  • Background: Adipocyte-macrophage communication plays a critical role regulating white adipose tissue (WAT) inflammatory gene expression. Because WAT inflammation contributes to the development of metabolic diseases, there is significant interest in understanding how exogenous compounds regulate the adipocyte-macrophage crosstalk. An aqueous (AQ) extract of North American (NA) ginseng (Panax quinquefolius) was previously shown to have strong inflammo-regulatory properties in adipocytes. This study examined whether different ginseng extracts influence adipocyte-macrophage crosstalk, as well as WAT inflammatory gene expression. Methods: The effects of AQ and ethanol (EtOH) ginseng extracts ($5{\mu}g/mL$) on adipocyte and macrophage inflammatory gene expression were studied in 3T3-L1 and RAW264.7 cells, respectively, using real-time reverse transcription polymerase chain reaction. Adipose tissue organ culture was also used to examine the effects of ginseng extracts on epididymal WAT (EWAT) and inguinal subcutaneous WAT (SWAT) inflammatory gene expression. Results: The AQ extract caused significant increases in the expression of common inflammatory genes (e.g., Mcp1, Ccl5, Tnf-${\alpha}$, Nos2) in both cell types. Culturing adipocytes in media from macrophages treated with the AQ extract, and vice versa, also induced inflammatory gene expression. Adipocyte Ppar-${\gamma}$ expression was reduced with the AQ extract. The AQ extract strongly induced inflammatory gene expression in EWAT, but not in SWAT. The EtOH extract had no effect on inflammatory gene expression in either both cell types or WAT. Conclusion: These findings provide important new insights into the inflammo-regulatory role of NA ginseng in WAT.

Avicularin Inhibits Lipopolysaccharide-Induced Inflammatory Response by Suppressing ERK Phosphorylation in RAW 264.7 Macrophages

  • Vo, Van Anh;Lee, Jae-Won;Chang, Ji-Eun;Kim, Ji-Young;Kim, Nam-Ho;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo;Kwon, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.532-537
    • /
    • 2012
  • Avicularin, quercetin-3-${\alpha}$-L-arabinofuranoside, has been reported to possess diverse pharmacological properties such as anti-inflammatory and anti-infectious effects. However, the underlying mechanism by which avicularin exerts its anti-inflammatory activity has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of avicularin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Avicularin significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein levels of iNOS and COX-2, which are responsible for the production of NO and $PGE_2$, respectively. Avicularin also suppressed LPS-induced overproduction of pro-inflammatory cytokine IL-$1{\beta}$. Furthermore, avicularin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-${\kappa}B$ in the nucleus. To understand the underlying signaling mechanism of anti-inflammatory activity of avicularin, involvement of multiple kinases was examined. Avicularin significantly attenuated LPS-induced activation of ERK signaling pathway in a concentration-dependent manner. Taken together, the present study clearly demonstrates that avicularin exhibits anti-inflammatory activity through the suppression of ERK signaling pathway in LPS-stimulated RAW 264.7 macrophage cells.