• Title/Summary/Keyword: inflammatory cell

Search Result 3,638, Processing Time 0.03 seconds

Contribution of TLR2 to the Initiation of Ganglioside-triggered Inflammatory Signaling

  • Yoon, Hee Jung;Jeon, Sae Bom;Suk, Kyoungho;Choi, Dong-Kug;Hong, Young-Joon;Park, Eun Jung
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.99-104
    • /
    • 2008
  • Gangliosides, sialic acid-containing glycosphingolipids, are implicated in many neuronal diseases, but the precise molecular mechanisms underlying their pathological activities are poorly understood. Here we report that TLR2 participates in the initiation of ganglioside-triggered inflammatory signaling responses. Using FACS analysis and immunofluorescence microscopy, we found that gangliosides rapidly enhanced the cell surface expression of TLR2 in microglia, while reducing that of TLR4. The ganglioside-dependent increase of TLR2 expression was also observed at the messenger and protein levels. We also showed that gangliosides stimulate the interaction of TLR2 with Myd88, an adaptor for TLRs, and obtained evidence that lipid raft formation is closely associated with the ganglioside-induced activation of TLR2 and subsequent inflammatory signaling. These results collectively suggest that TLR2 contributes to the ability of gangliosides to cause inflammatory conditions in the brain.

Anti-inflammatory Effect of 9-cis Retinoic Acid on the Human Mast Cell Line, HMC-1

  • Lee, Ji-Sook;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.13 no.2
    • /
    • pp.149-152
    • /
    • 2007
  • Mast cells play important roles in immune-related diseases, in particular, allergic diseases. Although 9-cis retinoic acid (9CRA) has been known as an immune regulator, its function in mast cells is not characterized well. In a previous paper, we demonstrated that 9CRA differentially decreases both CCR2 expression and the MCP-1-induced chemotactic activity of the human mast cell line, HMC-1 cells. In the present study, we examined the effects of 9CRA on the migration and expressions of inflammatory cytokines in HMC-1 cells. It was found that 9CRA significantly inhibited the migration of HMC-1 cells in response to stem cell factor (P<0.01), and it had no effect on the mRNA and protein expression of c-kit, a receptor binding to SCF. We further investigated the alternation of inflammatory cytokine expression and identified that 9CRA blocked the mRNA and protein expressions of Th2 cytokines such as interleukin (IL)-4 and IL-5. Taken together, our results demonstrate that 9CRA blocks SCF-induced cell movement and the protein secretion of IL-4 and IL-5, and this indicates that 9CRA may have anti-inflammatory effects on mast cells.

  • PDF

Role of Interleukin-4 in Atherosclerosis

  • Lee, Yong-Woo;Hirani, Anjali A.
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.1-15
    • /
    • 2006
  • Vascular endothelial cell injury or dysfunction has been implicated in the onset and' progression of cardiovascular diseases including atherosclerosis. A number of previous studies have demonstrated that the pro-oxidative and pro-inflammatory pathways within vascular endothelium play an important role in the initiation and progression of atherosclerosis, Recent evidence has provided compelling evidence to indicate that interleukin-4 (IL-4) can induce proc inflammatory environment via oxidative stress-mediated up-regulation of inflammatory mediators such as cytokine, chemokine, and adhesion molecules in vascular endothelial cells. In addition, apoptotic cell death within vascular endothelium has been hypothesized to be involved in the development of atherosclerosis. Emerging evidence has demonstrated that IL-4 can induce apoptosis of human vascular endothelial cells through the caspase-3-dependent pathway, suggesting that IL-4 can increase endothelial cell turnover by accelerated apoptosis, the event which may cause the dysfunction of the vascular endothelium. These studies will have a high probability of revealing new directions that lead to the development of clinical strategies toward the prevention and/or treatment for individuals with inflammatory vascular diseases including atherosclerosis.

Characterization of Plasmodium berghei Homologues of T-cell Immunomodulatory Protein as a New Potential Candidate for Protecting against Experimental Cerebral Malaria

  • Cui, Ai;Li, Yucen;Zhou, Xia;Wang, Lin;Luo, Enjie
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.101-115
    • /
    • 2019
  • The pathogenesis of cerebral malaria is biologically complex and involves multi-factorial mechanisms such as microvascular congestion, immunopathology by the pro-inflammatory cytokine and endothelial dysfunction. Recent data have suggested that a pleiotropic T-cell immunomodulatory protein (TIP) could effectively mediate inflammatory cytokines of mammalian immune response against acute graft-versus-host disease in animal models. In this study, we identified a conserved homologue of TIP in Plasmodium berghei (PbTIP) as a membrane protein in Plasmodium asexual stage. Compared with PBS control group, the pathology of experimental cerebral malaria (ECM) in rPbTIP intravenous injection (i.v.) group was alleviated by the downregulation of pro-inflammatory responses, and rPbTIP i.v. group elicited an expansion of regulatory T-cell response. Therefore, rPbTIP i.v. group displayed less severe brain pathology and feverish mice in rPbTIP i.v. group died from ECM. This study suggested that PbTIP may be a novel promising target to alleviate the severity of ECM.

Anti-inflammatory Effect of Combination of Scutellariae Radix and Lonicerae Caulis Water Extract (황금, 인동등 추출물 혼합의 항염효능에 관한 in vitro 연구)

  • Hsia, Yu Chun;Choi, You Kyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.330-336
    • /
    • 2014
  • This study aimed at examining the anti-inflammatory effects of Scutellariae Radix & Lonicerae Caulis water extract(SC). RAW 264.7 mouse macrophage cells were treated with $25{\sim}200{\mu}g/m{\ell}$ SC for 24 hours. Cell viability was then measured using MTT assays. The nitric oxide(NO) production and the creation of several cytokines in LPS-stimulated RAW 264.7 cells were investigated. SC inhibited significantly increasing the production of NO in LPS-induced RAW 264.7 cell at the density of 25, 50 and $200{\mu}g/m{\ell}$. SC inhibited significantly the TNF-${\alpha}$ of the RAW 264.7 cell induced by LPS at the density of $50{\mu}g/m{\ell}$. SC inhibited significantly the MIP-$1{\alpha}$ of the RAW 264.7 cell induced by LPS at the density of 25, 50 and $100{\mu}g/m{\ell}$. SC inhibited significantly the MIP-$1{\beta}$, MIP-2 at the density of 50, $100{\mu}g/m{\ell}$ in the RAW 264.7 cell increased by LPS, respectively. SC did not affect the production levels of VEGF in RAW 264.7 cell. As a result, SC significantly inhibited the inductions of MIP-$1{\alpha}$, MIP-$1{\beta}$, MIP-2 and NO in LPS-induced RAW 264.7 cell without causing the toxicity. These results signify that SC has anti-inflammatory effects on controlling the over inflammatory reaction on the RAW 264.7 cell.

Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways

  • Lee, Ju Hee;Min, Dong Suk;Lee, Chan Woo;Song, Kwang Ho;Kim, Yeong Shik;Kim, Hyun Pyo
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.476-484
    • /
    • 2018
  • Background: Korean Red Ginseng (steamed and dried white ginseng, Panax ginseng Meyer) is well known for enhancing vital energy and immune capacity and for inhibiting cancer cell growth. Some clinical studies also demonstrated a therapeutic potential of ginseng extract for treating lung inflammatory disorders. This study was conducted to establish the therapeutic potential of ginseng saponins on the lung inflammatory response. Methods: From Korean Red Ginseng, 11 ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and Rh2) were isolated. Their inhibitory potential and action mechanism were evaluated using a mouse model of lung inflammation, acute lung injury induced by intranasal lipopolysaccharide administration. Their anti-inflammatory activities were also examined in lung epithelial cell line (A549) and alveolar macrophage (MH-S). Results: All ginsenosides orally administered at 20 mg/kg showed 11.5-51.6% reduction of total cell numbers in bronchoalveolar lavage fluid (BALF). Among the ginsenosides, Rc, Re, Rg1, and Rh2 exhibited significant inhibitory action by reducing total cell numbers in the BALF by 34.1-51.6% (n = 5). Particularly, Re showed strong and comparable inhibitory potency with that of dexamethasone, as judged by the number of infiltrated cells and histological observations. Re treatment clearly inhibited the activation of mitogen-activated protein kinases, nuclear factor-${\kappa}B$, and the c-Fos component in the lung tissue (n = 3). Conclusion: Certain ginsenosides inhibit lung inflammatory responses by interrupting these signaling molecules and they are potential therapeutics for inflammatory lung diseases.

Regulation of Inflammatory Cytokine Production by Bee Venom in Rat Chondrocytes

  • Kim, Eun-Jung;Kim, Gye-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.132-137
    • /
    • 2011
  • Bee venom acupuncture (BVA), as a kind of herbal acupuncture, involved injecting diluted bee venom into acupoints and is used for pain, osteoarthritis and rheumatoid arthritis patients. BVA is growing in popularity, especially in Korea, and is used primarily for pain relief in many kinds of diseases. However, the effect of bee venom anti-inflammatory related action in lipopolysaccharide (LPS) induced chondrocyte stress have not been reported yet. The aim of this study was to investigate the effect of bee venom of cell viability and inflammatory cytokine in rat articular chondrocyte cultures stimulated with lipopolysaccharide. Inflammation was induced in rat chondrocytes by treatment with $10{\mu}g/m{\ell}$ LPS. The change of cell viability were decreased in chondrocytes after treatment with lipopolysaccharide. The cell viability revealed that BV exerted no significant cytotoxicity in the rat chondrocyte. Bee venom inhibited decreased cell viability in the presence of lipopolysaccharide ($10{\mu}g/m{\ell}$) in a dose dependent manner(0.1, 0.5, 1.0 and $5.0{\mu}g/m{\ell}$) at bee venom(p<0.05). Tumor necrosis factor (TNF)-${\alpha}$ production in the presence of lipopolysaccharide($1{\mu}g/m{\ell}$) was also inhibited in a dose dependent manner (p<0.05 from bee venom $0.1{\mu}g/m{\ell}$). Interleukin (IL)-6 production in the presence of lipopolysaccharide ($10{\mu}g/m{\ell}$) was inhibited as well (p<0.05 at bee venom 0.1, 0.5, 1.0 and $5.0{\mu}g/m{\ell}$, respectively). Our results demonstrate that bee venom was a anti-inflammatory agent of chondrocytes. Bee venom may exert its anti inflammatory effects through inhibition of TNF-${\alpha}$ and IL-6 synthesis, and may then pain relief and reduce the articular destruction.

Involvement of miR-Let7A in inflammatory response and cell survival/apoptosis regulated by resveratrol in THP-1 macrophage

  • Song, Juhyun;Jun, Mira;Ahn, Mok-Ryeon;Kim, Oh Yoen
    • Nutrition Research and Practice
    • /
    • v.10 no.4
    • /
    • pp.377-384
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Resveratrol, a natural polyphenol, has multiple functions in cellular responses including apoptosis, survival, and differentiation. It also participates in the regulation of inflammatory response and oxidative stress. MicroRNA-Let-7A (miR-Let7A), known as a tumor suppressor miRNA, was recently reported to play a crucial role in both inflammation and apoptosis. Therefore, we examined involvement of miR-Let7A in the modulation of inflammation and cell survival/apoptosis regulated by resveratrol. MATERIALS/METHODS: mRNA expression of pro-/anti-inflammatory cytokines and sirtuin 1 (SIRT1), and protein expression of apoptosis signal-regulating kinase 1 (ASK1), p-ASK1, and caspase-3 and cleaved caspase-3 were measured, and cell viability and Hoechst/PI staining for apoptosis were observed in Lipopolysaccharide (LPS)-stimulated human THP-1 macrophages with the treatment of resveratrol and/or miR-Let7A overexpression. RESULTS: Pre-treatment with resveratrol ($25-200{\mu}M$) resulted in significant recovery of the reduced cell viabilities under LPS-induced inflammatory condition and in markedly increased expression of miR-Let7A in non-stimulated or LPS-stimulated cells. Increased mRNA levels of tumor necrosis $factor-{\alpha}$ and interleukin (IL)-6 induced by LPS were significantly attenuated, and decreased levels of IL-10 and brain-derived neurotrophic factor were significantly restored by resveratrol and miR-Let7A overexpression, respectively, or in combination. Decreased expression of IL-4 mRNA by LPS stimulation was also significantly increased by miR-Let7A overexpression co-treated with resveratrol. In addition, decreased SIRT1 mRNA levels, and increased p-ASK1 levels and PI-positive cells by LPS stimulation were significantly restored by resveratrol and miR-Let7A overexpression, respectively, or in combination. CONCLUSIONS: miR-Let7A may be involved in the inflammatory response and cell survival/apoptosis modulated by resveratrol in human THP-1 macrophages.

Anti-inflammatory Effect and Mechanism of Citri Reticulatae Viride Pericarpium Water Extract (청피 물 추출물의 항염증 효과와 기전 연구)

  • Ahn, Tae-Seok;Hwang, Deok-Sang;Lee, Jin-Moo;Jang, Jun-Bock;Lee, Chang-Hoon
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.1
    • /
    • pp.34-47
    • /
    • 2021
  • Objectives: This study was designed to examine anti-inflammatory effect and mechanism of Citri Reticulatae Viride Pericarpium water extract (CRE). Methods: Cell cytotoxicity was tested with RAW 264.7 cells. To investigate anti-inflammatory effect of CRE in lipopolysaccharide (LPS)-induced RAW 264.7 cell, we measured nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10). In addition, mitrogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) were examined by western blotting in LPS-induced RAW 264.7 cell with treated CRE. Results: In cytotoxicity analysis, CRE does not affect cell cytotoxicity. As compared with the control group, the expression of NO, PGE2, TNF-α, IL-6 were significantly decreased, and IL-10 was significantly increased in LPS-induced RAW 264.7 cell with treated CRE. As a result of Western blotting, there was concentration-dependent inhibition of pp38, pERK in MAPK pathway and significant reduction of pp65 in the NF-κB pathway. Conclusions: CRE might have anti-inflammatory effect in LPS-induced macrophages by promoting the production of IL-10.

Effects of Liriope muscari Water Extracts on the Cell Death and Inflammatory Cytokine Expression of Poly I:C-treated Lung Carcinoma Cells (맥문동 열수 추출물이 Poly I:C를 처리한 폐암세포주의 사멸 및 염증성 사이토카인 발현에 미치는 영향)

  • Kang, Dayeon;Cho, Namjoon;Renchinkhand, Gereltuya;Lee, Bo-Hee;Kim, Eun-Mi;Nam, Myoung Soo;Kim, Keekwang
    • The Korea Journal of Herbology
    • /
    • v.36 no.1
    • /
    • pp.97-102
    • /
    • 2021
  • Objectives : Virus infection through the respiratory tract causes various inflammatory diseases such as pneumonia, cystic fibrosis, and obstructive pulmonary disease, causing enormous social damage. Therefore, it is very important to develop a treatment and prevention of infectious diseases. In this study, we investigated the effect of water extracts of Liriope muscari (WELM), known to improve lung function, on the inflammatory response of lung carcinoma cell line A549 cells induced by the viral double stranded RNA mimetic Polyinosinic:polycytidylic acid (Poly I:C). Methods : The cell viability by WELM treatment was analyzed using MTS assay in A549 cells. After inducing an inflammatory response to WELM-treated A549 cells with Poly I:C, the degree of apoptosis was confirmed through bright field microscopy. Interferon beta (IFN-β) mRNA expression level in A549 cells was analyzed by quantitative reverse transcription PCR (qRT-PCR). Results : WELM treatment has no significant effect on cell viability of A549 cells. We confirmed that pre-treatment of WELM effectively reduces the Poly I:C-induced apoptotic cell death in A549 cells. In addition, it was confirmed that the mRNA expression level of IFN-β, a pro-inflammatory cytokine increased by Poly I:C treatment, was significantly suppressed by WELM treatment in A549 cells. Conclusions : These results provide the evidence that WELM is effective at inhibiting inflammation on respiratory viral infections and suggest that Liriope muscari might be a valuable natural substance in the prevention and treatment of infectious diseases.