• Title/Summary/Keyword: infinite type point

Search Result 19, Processing Time 0.023 seconds

An Approach for Efficient Numerical Integration of the Sommerfeld Type Integrals Pertinent to the Microstrip Surface Green's Function (Microstrip 표면 Green 함수에 관한 Sommerfeld 형 적분들의 효과적인 수치 적분법)

  • 최익권
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.1
    • /
    • pp.143-149
    • /
    • 1993
  • An approach is presented for efficient numerical integration of the Sormnerfeld type integrals pertinent to the microstrip surface Green's function arising in the problem of an electric current point source on an infinite planar grounded dielectric substrate. This approach, valid for both lossless and lossy dielectric substrates, is based on the deformation of the integration contour via a coordinate transformation and Cauchy's residue theory, and identifies clearly the effects of surface waves. I ts useful application is in a rigorous moment method analysis of micros trip antenna arrays and microstrip guided wave structures. The efficiency and the usefulness of the present approach are emphasized through some numerical calculations of the impedance matrix elements with associated CPU times.

  • PDF

Forced vibration of the elastic system consisting of the hollow cylinder and surrounding elastic medium under perfect and imperfect contact

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.113-123
    • /
    • 2017
  • The bi-material elastic system consisting of the circular hollow cylinder and the infinite elastic medium surrounding this cylinder is considered and it is assumed that on the inner free face of the cylinder a point-located axisymmetric time harmonic force, with respect to the cylinder's axis and which is uniformly distributed in the circumferential direction, acts. The shear-spring type imperfect contact conditions on the interface between the constituents are satisfied. The mathematical formulation of the problem is made within the scope of the exact equations of linear elastodynamics. The focus is on the frequency-response of the interface normal and shear stresses and the influence of the problem parameters, such as the ratio of modulus of elasticity, the ratio of the cylinder thickness to the cylinder radius, and the shear-spring type parameter which characterizes the degree of the contact imperfectness, on these responses. Corresponding numerical results are presented and discussed. In particular, it is established that the character of the influence of the contact imperfection on the frequency response of the interface stresses depends on the values of the vibration frequency of the external forces.

Calculation of the Electric Field in Antenna Region for a Planar-type Inductively Coupled Plasma Source Using Surface Current Model (표면 전류 모델을 이용한 TCP 장치의 안테나 영역 전기장 계산)

  • Jung, B.S.;Yoon, N.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.419-425
    • /
    • 2008
  • In previous study, it was reported that the anomalous skin effect should be considered in the low pressure condition(<10 mTorr). However there is the problem that the filament type antenna model of which size is 0 makes the non-physical phenomena that the electric field at the antenna point is infinite. Therefore, in this work, using the surface current model the electric field in antenna region is calculated and compared with the case of filament type antenna model in various conditions.

NONLINEAR DIFFERENTIAL INCLUSIONS OF SEMIMONOTONE AND CONDENSING TYPE IN HILBERT SPACES

  • Abedi, Hossein;Jahanipur, Ruhollah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.421-438
    • /
    • 2015
  • In this paper, we study the existence of classical and generalized solutions for nonlinear differential inclusions $x^{\prime}(t){\in}F(t,x(t))$ in Hilbert spaces in which the multifunction F on the right-hand side is hemicontinuous and satisfies the semimonotone condition or is condensing. Our existence results are obtained via the selection and fixed point methods by reducing the problem to an ordinary differential equation. We first prove the existence theorem in finite dimensional spaces and then we generalize the results to the infinite dimensional separable Hilbert spaces. Then we apply the results to prove the existence of the mild solution for semilinear evolution inclusions. At last, we give an example to illustrate the results obtained in the paper.

A LIOUVILLE TYPE THEOREM FOR HARMONIC MORPHISMS

  • Jung, Seoung-Dal;Liu, Huili;Moon, Dong-Joo
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.941-947
    • /
    • 2007
  • Let M be a complete Riemannian manifold and let N be a Riemannian manifold of nonpositive scalar curvature. Let ${\mu}0$ be the least eigenvalue of the Laplacian acting on $L^2-functions$ on M. We show that if $Ric^M{\ge}-{\mu}0$ at all $x{\in}M$ and either $Ric^M>-{\mu}0$ at some point x0 or Vol(M) is infinite, then every harmonic morphism ${\phi}:M{\to}N$ of finite energy is constant.

Slender piezoelectric beams with resistive-inductive electrodes - modeling and axial wave propagation

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.335-354
    • /
    • 2016
  • This contribution presents an extended one-dimensional theory for piezoelectric beam-type structures with non-ideal electrodes. For these types of electrodes the equipotential area condition is not satisfied. The main motivation of our research is originated from passive vibration control: when an elastic structure is covered by several piezoelectric patches that are linked via resistances and inductances, vibrational energy is efficiently dissipated if the electric network is properly designed. Assuming infinitely small piezoelectric patches that are connected by an infinite number of electrical, in particular resistive and inductive elements, one obtains the Telegrapher's equation for the voltage across the piezoelectric transducer. Embedding this outcome into the framework of Bernoulli-Euler, the final equations are coupled to the wave equations for the longitudinal motion of a bar and to the partial differential equations for the lateral motion of the beam. We present results for the wave propagation of a longitudinal bar for several types of electrode properties. The frequency spectra are computed (phase angle, wave number, wave speed), which point out the effect of resistive and inductive electrodes on wave characteristics. Our results show that electrical damping due to the resistivity of the electrodes is different from internal (=strain velocity dependent) or external (=velocity dependent) mechanical damping. Finally, results are presented, when the structure is excited by a harmonic single force, yielding that resistive-inductive electrodes are suitable candidates for passive vibration control that might be of great interest for practical applications in the future.

Dynamic analysis of concrete gravity dam-reservoir systems by wavenumber approach in the frequency domain

  • Lotfi, Vahid;Samii, Ali
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.533-548
    • /
    • 2012
  • Dynamic analysis of concrete gravity dam-reservoir systems is an important topic in the study of fluid-structure interaction problems. It is well-known that the rigorous approach for solving this problem relies heavily on employing a two-dimensional semi-infinite fluid element. The hyper-element is formulated in frequency domain and its application in this field has led to many especial purpose programs which were demanding from programming point of view. In this study, a technique is proposed for dynamic analysis of dam-reservoir systems in the context of pure finite element programming which is referred to as the wavenumber approach. In this technique, the wavenumber condition is imposed on the truncation boundary or the upstream face of the near-field water domain. The method is initially described. Subsequently, the response of an idealized triangular dam-reservoir system is obtained by this approach, and the results are compared against the exact response. Based on this investigation, it is concluded that this approach can be envisaged as a great substitute for the rigorous type of analysis.

Change and Application of Lace in Europe (유럽에서의 레이스의 변천과 활용)

  • Lee, Kyung-Hee
    • Fashion & Textile Research Journal
    • /
    • v.4 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • The word 'lace' comes from the Latin, lacium, meaning a knot. There are two broad categories of lace: needlepoint lace and bobbin lace. Lace has enjoyed a multitude of uses, embellishing both liturgical and domestic objects. It has also played a major role in the history of western fashion, adorning the apparel of men as well as women. Lace lappets and cap crowns, cravat ends and veils were made for those who could afford them. Before the end of the sixteen century, more complex techniques were employed. The baroque period, needlepoint lace evolved from the early simple geometric patterns of punto in aria Which enhanced ruffs, to deeply scalloped designs, often referred to as collar lace, and thence to the bold and magnificent relief effects of Venetian gros point. Through the seventeenth century is noted for the infinite variety of its cravat, collar and kerchief, most of them lace trimmed and all artfully contrived for the wearer. The type of sleeve in women's dress reaching just below the elbow, ending in ruffles of lace which was called engageantes. Sometimes the ends of a fichu or headdress decorated of lace. In the nineteenth century, empress Eugenie's love of lace resulted in a marked increase in the use of that lovely, delicate fabrication. It was lavished upon sleeves, hats, capes, and handkerchieves. Entire flounces, parasols, jackets, and shawls of lace were created by skilled lace makers of Europe. By the time this magnificent piece was created, most lace was being produced by machine. Today, the tradition of handmade lace continues, but glorious examples are no longer made. However, the techniques have been taken up and revitalized within the fiber art movement.

About Short-stacking Effect of Illite-smectite Mixed Layers (일라이트-스멕타이트 혼합층광물의 단범위적층효과에 대한 고찰)

  • Kang, Il-Mo
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Illite-smectite mixed layers (I-S) occurring authigenically in diagenetic and hydrothermal environments reacts toward more illite-rich phases as temperature and potassium ion concentration increase. For that reason, I-S is often used as geothermometry and/or geochronometry at the field of hydrocarbons or ore minerals exploration. Generally, I-S shows X-ray powder diffraction (XRD) patterns of ultra-thin lamellar structures, which consist of restricted numbers of sillicate layers (normally, 5 ~ 15 layers) stacked in parallel to a-b planes. This ultra-thinness is known to decrease I-S expandability (%S) rather than theoretically expected one (short-stacking effect). We attempt here to quantify the short stacking effect of I-S using the difference of two types of expandability: one type is a maximum expandability ($%S_{Max}$) of infinite stacks of fundamental particles (physically inseparable smallest units), and the other type is an expandability of finite particle stacks normally measured using X-ray powder diffraction (XRD) ($%S_{XRD}$). Eleven I-S samples from the Geumseongsan volcanic complex, Uiseong, Gyeongbuk, have been analyzed for measuring $%S_{XRD}$ and average coherent scattering thickness (CST) after size separation under 1 ${\mu}m$. Average fundamental particle thickness ($N_f$) and $%S_{Max}$ have been determined from $%S_{XRD}$ and CST using inter-parameter relationships of I-S layer structures. The discrepancy between $%S_{Max}$ and $%S_{XRD}$ (${\Delta}%S$) suggests that the maximum short-stacking effect happens approximately at 20 $%S_{XRD}$, of which point represents I-S layer structures consisting of ca. average 3-layered fundamental particles ($N_f{\approx}3$). As a result of inferring the $%S_{XRD}$ range of each Reichweite using the $%S_{XRD}$ vs. $N_f$ diagram of Kang et al. (2002), we can confirms that the fundamental particle thickness is a determinant factor for I-S Reichweite, and also that the short-stacking effect shifts the $%S_{XRD}$ range of each Reichweite toward smaller $%S_{XRD}$ values than those that can be theoretically prospected using junction probability.