• 제목/요약/키워드: infinite Grassmannian

검색결과 1건 처리시간 0.013초

HOLOMORPHIC EMBEDDINGS OF STEIN SPACES IN INFINITE-DIMENSIONAL PROJECTIVE SPACES

  • BALLICO E.
    • 대한수학회지
    • /
    • 제42권1호
    • /
    • pp.129-134
    • /
    • 2005
  • Lpt X be a reduced Stein space and L a holomorphic line bundle on X. L is spanned by its global sections and the associated holomorphic map $h_L\;:\;X{\to}P(H^0(X, L)^{\ast})$ is an embedding. Choose any locally convex vector topology ${\tau}\;on\;H^0(X, L)^{\ast}$ stronger than the weak-topology. Here we prove that $h_L(X)$ is sequentially closed in $P(H^0(X, L)^{\ast})$ and arithmetically Cohen -Macaulay. i.e. for all integers $k{\ge}1$ the restriction map ${\rho}_k\;:\;H^0(P(H^0(X, L)^{\ast}),\;O_{P(H^0(X, L)^{\ast})}(k)){\to}H^0(h_L(X),O_{hL_(X)}(k)){\cong}H^0(X, L^{\otimes{k}})$ is surjective.