• Title/Summary/Keyword: infiltration air

Search Result 150, Processing Time 0.025 seconds

Development of an Infiltration and Ventilation Model for Predicting Airflow Rates within Buildings (빌딩 내의 공기유동량 예측을 위한 누입 및 환기모델의 개발)

  • Cho, Seok-Ho
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.207-218
    • /
    • 2014
  • A ventilation model was developed for predicting the air change per hour(ACH) in buildings and the airflow rates between zones of a multi-room building. In this model, the important parameters used in the calculation of airflow are wind velocity, wind direction, terrain effect, shielding effect by surrounding buildings, the effect of the window type and insect screening, etc. Also, the resulting set of mass balance equations required for the process of calculation of airflow rates are solved using a Conte-De Boor method. When this model was applied to the building which had been tested by Chandra et al.(1983), the comparison of predicted results by this study with measured results by Chandra et al. indicated that their variations were within -10%~+12%. Also, this model was applied to a building with five zones. As a result, when the wind velocity and direction did not change, terrain characteristics influenced the largest and window types influenced the least on building ventilation among terrain characteristics, local shieldings, and window types. Except for easterly and westerly winds, the ACH increased depending on wind velocity. The wind direction had influence on the airflow rates and directions through openings in building. Thus, this model can be available for predicting the airflow rates within buildings, and the results of this study can be useful for the quantification of airflow that is essential to the research of indoor air quality(temperature, humidity, or contaminant concentration) as well as to the design of building with high energy efficiency.

A Study on the Simplified Energy Calculation Method of Apartment Houses (공동주택의 연료소모량 간이계산법에 관한 연구)

  • Lim, C.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.404-414
    • /
    • 1991
  • The purpose of this study is to compare the amount of heating, domestic hot water, and cooking fuel consumption with that of heating fuel consumption by the existing calculation method and to provide rational heating system design and energy conservation through presenting the simplified equation which can anticipate the amount of heating, domestic hot water, and cooking and the load mechanical equipments. The affecting factors to the amount of energy consumption are the case of Heating, Domestic Hot Water and Cooking in addition to the energy conservation intention.

  • PDF

Residence s Exposure to Nitrogen Dioxide and Indoor Air Characteristics (거주지역 실내공기 특성 및 이산화질소 노출에 관한 연구)

  • 양원호;배현주;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.183-192
    • /
    • 2002
  • Indoor air quality is affected by source strength of pollutants, ventilation rate, decay rate, outdoor level and so on. Although technologies exist to measure these factors directly, direct measurements of all factors are impractical in most field studies. The purpose of this study was to develop an alternative methods to estimate these factors by multiple measurements. Daily indoor and outdoor NO$_2$concentrations for 21 days in 20 houses in summer and winter, Seoul. Using a mass balance model and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor(emission rate divided by sum of air exchange rate and deposition constant) were calculated. Subsequently, the ventilation and source strength were estimated. During sampling period, geometric mean of natural ventilation was estimated to be 1.10$\pm$1.53 ACH, assuming a residential NO$_2$decay rate of 0.8 hr$^{-1}$ in summer. In winter, natural ventilation was 0.75$\pm$1.31 ACH. And mean source strengths in summer and winter were 14.8ppb/hr and 22.4ppb/hr, respectively. Although the method showed similar finding previous studies, the study did not measure ACH or the source strength of the house directly. As validation of natural ventilations, infiltrations were measured with $CO_2$tracer gas in 18 houses. Relationship between ventilation and infiltration was statistically correlated (Pearson r=0.63, p=0.02).

A Hydraulic Conductivity Model Considering the Infiltration Characteristics Near Saturation in Unsaturated Slopes (불포화 사면의 포화 부근 침투 특성을 고려한 수리전도도 모델)

  • Oh, Se-Boong;Park, Ki-Hun;Kim, Jun-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.37-47
    • /
    • 2014
  • Unsaturated hydraulic conductivity (HC) is integrated theoretically from soil water retention curves (SWRC) by Mualem capillary model, but the prediction of HC is extremely sensitive to small variation of matric suction near saturation. Near saturation, the Mualem HC based on smooth SWRC decreases abruptly and has problems in the reliability of hydraulic behavior and the stability of numerical solutions. To improve van Genuchten-Mualem (VGM) HC, the van Genuchten SWRC model is modified within range of low matric suction (arbitrary air entry pressure). At an arbitrary air entry pressure, the VG SWRC is linearized in log scale until full saturation. The modified VG SWRC does not affect the fit of actual retention behavior and either the parameters of original VG SWRC fit. Using the modified VG SWRC, the VGM HC is modified to integrate for each interval decomposed by arbitrary air entry pressure. An analytical solution on modified VGM HC is proposed each interval, to protect the rapid change in HC near saturation. For silty soils, VGM models of HC function underestimate the unsaturated permeability characteristics and especially show rapid reduction near saturation. The modified VGM model predicts more accurate HC functions for Korean weathered soils. Furthermore, near saturation, the saturated HC is conserved by the modified VGM model. After 2-D infiltration analysis of an actual slope, the hydraulic behaviors are compared for VGM and the modified models. The prediction by the proposed model conserved the convergence of solutions on various rainfall conditions. However, the solution by VGM model did not converge since the conductivity near saturation reduced abruptly for heavy rainfall condition. Using VGM model, the factor of safety is overestimated in both initial and final stage during heavy rainfall. Stability analysis based on infiltration analysis could simulate the actual slope failure by the proposed model on HC.

A Study on the Effect of Open and Closed Room Doors on Apartment Ventilation Characteristics (공동주택에서 각 실 문의 개폐에 따른 환기 특성 연구)

  • Choi, Im-Kyoo;Kim, Young-Il;Chung, Kwang-Seop
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.469-474
    • /
    • 2008
  • The objective of this study is to propose basic design guidelines for more effective air ventilation system in apartments. It is well known that ventilation depends on whether the room doors are open or closed as well as people's living patterns. This study considers 84 ㎡-sized apartment which has extended living room without balcony. Ventilation of bathroom and kitchen is not considered. The height of the building, external air pressure and air infiltration through the windows are also neglected. The regulation on indoor air quality made it mandatory that the air change per hour be more than 0.7. Four models are suggested to study the effect of open and closed doors. Models 1 and 3 are open door types and models 2 and 4 are closed door types. The open types have 50 mm hole near the top of the door to substitute exhaust outlet. The ventilation effectiveness was evaluated by 3-dimensional numerical simulation using finite volume method by a commercial software. This work compares air flow, temperature of air, age of air and the efficiency of ventilation of apartments with wooden doors of bedroom 1 and 2, which are open or closed.

  • PDF

A Study on the Performance Evaluation of the Hybrid Ventilation System for Small Apartment Houses (소형 공동주택의 하이브리드 환기시스템 성능실험 연구)

  • Chun, Chu-Young;Kim, Gil-Tae;Lee, Jong-Sung;Kim, Sang-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.696-701
    • /
    • 2008
  • From Feb. 2006, the ventilating systems with air exchange rate of over 0.7times/hour are installed at the apartment houses (over 100 units). Installation cost and maintenance cost are very important factors for ventilating system because consumers have to pay the expenses of that system. Especially small apartment needs more considerations because small apartment is comparatively the economically weak part. The purpose of this study is to the performance evaluation of the hybrid ventilation system for small apartment houses. Hybrid system 1 consists of natural ventilation system and duct type exhaust diffusers. Hybrid system 2 has natural ventilation system and toilet exhaust system with static pressure fan. Infiltration of test apartment houses with ventilation system is under 0.1 times/hour. Mean air age of hybrid system 1 is 1.52 hours and hybrid system 2 is 1.42 hours. Mean ventilation effectiveness of hybrid system 2(93%) is higher than that of hybrid system 1(81%).

Effect of Metal Chloride Coloring Liquids on Color and Strength Changes of Tetragonal Zirconia Polycrystals (금속염화물 착색제 침투가 정방정 지르코니아 다결정체의 색조와 강도 변화에 미치는 영향)

  • Oh, Jong-Jin;Noh, Hyeong-Rok
    • Journal of dental hygiene science
    • /
    • v.15 no.5
    • /
    • pp.577-584
    • /
    • 2015
  • The purpose of this study was to evaluate the effect of metal chloride infiltration treatment on color and strength changes of the yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). Fifty disc specimens were prepared with a Y-TZP powder (ZPEX; Tosoh, Japan). Thirty different metal chloride solutions containing 0.03~0.08 wt% chromium and 0.03~0.07 wt% terbium ions were prepared. Presintered Y-TZP specimens were soaked in metal chloride coloring liquids for 3 minutes and sintered in air at $1,450^{\circ}C$ for 2 hours. The color of the specimens was measured with spectrophotometer and color difference (${\Delta}E^*$) was obtained based on the CIE $L^*$, $a^*$, $b^*$ color coordinate values. To evaluate the effect of metal chloride infiltration strength changes, the biaxial flexural test was performed at crosshead speed 0.5 mm/min. Colors of the sintered Y-TZP showed the colors of Vita shade guide A1, A2 and A3 with the infiltration of chromium and terbium chloride solutions. Density of the sintered Y-TZP increased by the infiltration of chromium and terbium chloride solutions. Bi-axial flexural strength of the sintered Y-TZP did not show statistically significant differences by the infiltration of chromium and terbium chloride solutions (p>0.05). Chromium and terbium chloride did not affect the crystal phase of zirconia, and all specimens showed tetragonal phase. Accordingly, this study suggests that chromium and terbium chlorides can make colored zirconia while adding in a liquid form. The color of colored zirconia differ from that of vita shade guide but it can use all ceramic restoration as substructure in dental clinic.

Characterization of Particle Size Distribution of Infiltrated Secondhand Smoke through the Gap in a Single Glazed and a Secondary Glazed Window by Indoor and Outdoor Pressure Differences (실내외 압력 차에 따른 단창과 이중창의 틈새로 침투된 간접흡연의 입자 크기 분포 특성)

  • Kim, Jeonghoon;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.4
    • /
    • pp.360-369
    • /
    • 2018
  • Objectives: Outdoor tobacco smoke can penetrate into the indoor environment through cracks in the building envelope. This study aimed to characterize the particle size distribution of infiltrated secondhand smoke (SHS) through the gap in a single glazed and a secondary glazed window according to pressure differences in a chamber. Methods: Two polyvinyl chloride sliding windows were evaluated for infiltration, one with a glazed window and the other with a secondary glazed window. Each window was mounted and sealed in a polycarbonate chamber. The air in the chamber was discharged to the outside to establish pressure differences in the chamber (${\Delta}P$). Outdoor smoking sources were simulated at a one-meter distance from the window side of the chamber. The particle size distribution of the infiltrated SHS was measured in the chamber using a portable aerosol spectrometer. The particle size distribution of SHS inside the chamber was normalized by the outdoor peak for fine particles. Results: The particle size distribution of SHS inside the chamber was similar regardless of window type and ${\Delta}P$. It peaked at $0.2-0.3{\mu}m$. Increases in particulate matter (PM) concentrations from SHS infiltration were higher with the glazed window than with the secondary glazed window. PM concentrations of less than $1{\mu}m$ increased as ${\Delta}P$ was increased inside the chamber. Conclusions: The majority of infiltrated SHS particles through window gap was $0.2-0.3{\mu}m$ in size. Outdoor SHS particles infiltrated more with a glazed window than with a secondary glazed window. Particle sizes of less than $1{\mu}m$ were associated with ${\Delta}P$. These findings can be a reference for further research on the measurement of infiltrated SHS in buildings.

Evaluation of Applicability of penetrating-type Nano-Coat for Preventing Deterioration of Concrete (침투형 Nano-Coat를 이용한 콘크리트 열화 방지 적용성 평가)

  • Lee, Jun Hee;Kim, Jo Soon;Sim, Yang Mo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.7-15
    • /
    • 2017
  • PURPOSES : Infiltration of moisture, polluted material, and deicer into concrete, accompanied by freeze and thaw can cause significant deterioration of concrete pavement. In order to protect concrete from deterioration, it is necessary to prevent the infiltration of these concrete external materials. The moisture-repellent agent, which is a surface treatment and maintenance material added to concrete structures to render them water resistant, has advantages such as prevention of water infiltration and security against air permeation. Nano-coat, which is referred to as silicon hydride, is typically used as a moisture-repellent agent. Therefore, in this study, an attempt is made to use penetration-type Nano-coat as an alternative in order to evaluate its applicability through environmental resistance tests. METHODS : This study aimed to evaluate the applicability of penetration-type Nano-coat, which can provide water repellency to concrete, in concrete pavements, through various environmental resistance tests such as freezing and thawing resistance, chloride ion penetration resistance, and surface scaling resistance tests. The applicability of penetration-type Nano-coat was demonstrated based on the specification of KS F 2711, KS F 2456, and ASTM C 672. RESULTS :In the case of penetration-type Nano-coat applied on sound concrete, an increase in concrete durability was demonstrated by the negligible chloride ion penetrability and the absence of scaling, as revealed by visual observation of the surface, after 50 cycles of scaling resistance test. In addition, test result of the application of penetration-type Nano-coat on deteriorated concrete established that concrete surface pretreated by grinding provided improved durability than non-treated concrete. CONCLUSIONS :This study indicates that penetration-type Nano-coat is applicable as an effective alternative, to increase the durability of concrete structures. In addition, it was known that pretreatment of deteriorated concrete surface, such as grinding, is required to improve the long-term performance of concrete pavement.