• Title/Summary/Keyword: inertia properties

Search Result 169, Processing Time 0.03 seconds

Determination of Dynamic Parameters of Agricultural Tractor Cab-Suspension by Modal Analysis (모드 해석을 이용한 트랙터 캡-현가 장치의 동적 파라미터 결정에 관한 연구)

  • 조진상;김경욱;박홍제
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.216-223
    • /
    • 1999
  • This study was intended to determine the inertia , damping and stiffness properties of the cab-suspension of agricultural tractors by applying the direct system identification method (DSIM). Since the rigid and elastic modes of the cab-suspension are not likely to be separated clearly, direct application of the DSIM may result in large computation error. To solve such a problem, a method of locating mass center of the cab were determined by assuming the behavior of the cab-suspension is a rigid body motion. The dynamic parameters of the cab-suspension were then determined by applying the DSIM with the known coordinates of the mass center. The constraints of spatial matrices of the cab-suspension also make the algorithm for the DSIM perform better. The values of dynamic parameters determined by this method agreed well with those determined by the experiment.

  • PDF

Forced Vibration Analysis of a Hollow Crankshaft by using Transfer Matrix Method and Finite Element Method (전달 행렬법과 유한요소법을 이용한 중공 크랭크축의 강제 진동 해석)

  • 김관주;최진욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.44-52
    • /
    • 1997
  • As part of the effort to reduce the weight of powertrain, a hollow crankshaft has been designed. The mass reduction of the crankshaft changes the dynamic properties of the crankshaft such as moment of inertia, and torsional, bending stiffness. The purpose of this paper is to compare the dynamic behavior of the hollow crankshaft with that of the original, solid crankshaft. Global dynamic behavior of the crankshaft is analyzed bgy the transfer matrix method(TMM). The crankshaft has been modeled by 38 lumped mass and stiffness elements. The dynamic patameters of each lumped element are provided by Finite Element Method(FEM). The responses of the crankshaft from TMM are fed back as loading conditions to the Finite Element model to obtain dynamic stresses for critical areas of the crankshaft.

  • PDF

Investigation on Metal Transfer in GMA Welding through Dimensional Analysis (차원 해석을 통한 GMA 용접의 금속이행 현상에 관한 분석)

  • 최상균;유중돈
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.62-70
    • /
    • 1999
  • Since various parameters including the welding conditions and material properties are involved in metal transfer, it is difficult to figure out the effects of each parameter. In this study, dimensional analysis in performed to reduce the number of the parameters and to reveal the effect of each parameter on metal transfer. Dimensionless parameters are derived based on the inertia force and surface tension, and their contributions on metal transfer are estimated by analyzing the calculated results using the volume of fluid (VOF) method. Among several dimensionless parameters, $N_{SE}(=$\mu$_{0}I^{2}/d_{w}${\gamma}$)$ which represents the ratio of the electromagnetic force to surface tension, is found to be appropriate to describe metal transfer and estimate the transition current. Predicted results of transition current and drop size are in reasonably good agreements with available experimental date which show the validity of proposed dimensional analysis.

  • PDF

A Study on the Seismic Analysis of Continuous Preflex Composite Bridges (연속 프리플렉스 합성형교의 내진해석에 관한 연구)

  • 구민세;정재운;김훈희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.241-248
    • /
    • 1999
  • Structural damage during an earthquake is caused by the response of the structure to the ground motion input at its base. The dynamic force produced in the structure are due to the inertia of its vibrating elements. The response of the structure exceeds the ground motion and this dynamic magnification depends on the duration and frequency content of the ground vibration, the soil properties at the site, distance from the epicenter and the dynamic characteristics of the structure. Earthquake load used in this study as a input data was artificially simulated with the design spectrum diagram in the Korean Earthquake Resistant Design Code. This paper presents the seismic analysis of the continuous preflex composite girder bridges according to variation of pier's height and span's length.

  • PDF

Development of Sintered Friction Material for High Speed Train (고속 전철용 소결 마찰재료 개발)

  • 김기열;김상호;이범주;조정환
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.779-786
    • /
    • 2002
  • The Friction Brake Pad of High Speed Train is the most important parts in brake system, which is usually made of Cu-based Sintered friction material. This study has been carried out about the formulation effects of sintered friction material and made lots of sample brake pads. Then, we have done the performance test of the developed product by using full scale inertia Dynamo-meter. This performance test (braking speed 300km/h) was conducted as GEC Alsthom Standard test procedure and High Speed Brake Test (braking speed 350km/h) was done at "Poli" in Italy. The friction properties of this product was almost identical with the brake pad which is currently used to TGV. And the temperature of brake disk on braking speed 350Km/h was a little higher.

  • PDF

Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.361-371
    • /
    • 2020
  • Exact solution for nonlinear behavior of clamped-clamped functionally graded (FG) buckled beams is presented. The effective material properties are considered to vary along the thickness direction according to exponential-law form. The in-plane inertia and damping are neglected, and hence the governing equations are reduced to a single nonlinear fourth-order partial-integral-differential equation. The von Kármán geometric nonlinearity has been considered in the formulation. Galerkin procedure is used to obtain a second order nonlinear ordinary equation with quadratic and cubic nonlinear terms. Based on the mode of the corresponding linear problem, which readily satisfy the boundary conditions, the frequencies for the nonlinear problem are obtained using the Jacobi elliptic functions. The effects of various parameters such as the Young's modulus ratio, the beam slenderness ratio, the vibration amplitude and the magnitude of axial load on the nonlinear behavior are examined.

An Analytic Technique for Making a Linear Model of a Hydraulic Mount (유체 봉입 마운트 선형 모형의 해석적 구성 기법)

  • Lee, Jun-Hwa;Kim, Kwang-Joon;Won, Kwang-Min;Kang, Koo-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.410-415
    • /
    • 2001
  • Hydraulic mounts have been used as an alternative to the conventional rubber mounts for they can provide more desirable stiffness and damping properties which may vary with frequency and excitation amplitude. Although a lumped-parameter non-linear model of the hydraulic mount developed by a simple fluid dynamic analysis can be successfully used for representing the inertia track dynamics, a linear model is still preferred. In this paper, an analytic technique for making a linear model of the hydraulic mount is proposed.

  • PDF

Vibration Analysis of a Hollow Crankshaft Supported by Fluid-film Bearing (중공 크랭크축 베어링계의 진동해석)

  • 조윤국;김정수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.333-338
    • /
    • 1997
  • A hollow crankshaft is considered as part of an effort to reduce the weight of the automobile powertrain. Since the resulting mass reduction alters both the inertia and stiffness properties of the crankshaft, the vibration characteristics of the hollow crankshaft needs to be investigated in comparison with the original solid crankshaft. The crankshafts are modeled by 38 lumped mass and stiffness elements, in which the dynamic parameters for each lumped element are obtained by the finite element calculation. The fluid-film bearings supporting the crankshaft give rise to linear spring and damping elements that can be derived from the hydrodynamic bearing model. The transfer matrix method is applied to yield the natural frequencies and mode shapes of the crankshaft vibration. The natural frequencies of the hollow crankshaft are founded to be greater than that of the solid crankshaft, and the incorporation of the bearing stiffness tends to accentuate the difference.

  • PDF

Dynamic Behaviour of Bridges with Hysteric Isolator under Seismic Acceleration (이력 감진장치를 설치한 교량의 지진에 의한 동적 거동)

  • Im, Jung-Soon;Jo, Jae-Byung;An, Young-Gi;Lee, Hee-Mok;Hong, Soon-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.149-156
    • /
    • 1999
  • Numerical studies were carried out to investigate the mechanical properties of competent hysteric isolators for seismic design of bridge. For dynamic analysis, bridges with isolator were simplified to a model with single degree of freedom. The initial stiffness and the yielding forces of hysteric isolators were varied. Seismic responses obtained by time history analysis show that about 4% of the weight acting as the inertia force is appropriate for the yielding force of isolator. And also better results could be achieved with the values about two times the weight per unit displacement for the initial stiffness of isolator.

  • PDF

A Study on Calculation of Cross-Section Properties for Composite Rotor Blades Using Finite Element Method (유한요소법 기반의 복합재료 블레이드 단면 특성치 계산에 관한 연구)

  • Park, Il-Ju;Jung, Sung-Nam;Cho, Jin-Yeon;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.442-449
    • /
    • 2009
  • A two-dimensional cross-section analysis program based on the finite element method has been developed for composite blades with solid, thin-walled and compound cross-sections. The weighted-modulus method is introduced to determine the laminated composite material properties. The shear center and the torsion constant for any given section are calculated according to the Trefftz' definition and the St. Venant torsion theory, respectively. The singular value problem of cross-section stiffness properties faced during the section analysis has been solved by performing an eigenvalue analysis to remove the rigid body mode. Numerical results showing the accuracy of the program obtained for stiffness, offset and inertia properties are compared in this analysis. The current analysis results are validated with those obtained by commercial software and published data available in the literature and a good correlation has generally been achieved through a series of validation study.