• 제목/요약/키워드: inerter system

검색결과 13건 처리시간 0.017초

Dynamic characteristics of multiple inerter-based dampers for suppressing harmonically forced oscillations

  • Chen, Huating;Jia, Shaomin;He, Xuefeng
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.747-762
    • /
    • 2019
  • Based on the ball-screw mechanism, a tuned viscous mass damper (TVMD) has been proposed, which has functions of amplifying physical mass of the system and frequency tuning. Considering the sensitivity of a single TVMD's effectiveness to frequency mistuning like that of the conventional tuned mass damper (TMD) and according to the concept of the conventional multiple tuned mass damper (MTMD), in the present paper, multiple tuned mass viscous dampers (MTVMD) consisting of many tuned mass dampers (TVMD) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTVMD is manufactured by keeping the stiffness and damping constant and varying the mass associated with the lead of the ball-screw type inerter element in the damper. The structure is represented by its mode-generalized system in a specific vibration mode controlled using the mode reduced-order method. Modal properties and fundamental characteristics of the MTVMD-structure system are investigated analytically with the parameters, i.e., the frequency band, the average damping ratio, the tuning frequency ratio, the total number of TVMD and the total mass ratio. It is found that there exists an optimum set of the parameters that makes the frequency response curve of the structure flattened with smaller amplitudes in a wider input frequency range. The effectiveness and robustness of the MTVMD are also discussed in comparison with those of the usual single TVMD (STVMD) and the results shows that the MTVMD is more effective and robust with the same level of total mass.

2자유도 진동시스템에 관한 이론적 고찰 및 진동흡진기로의 응용 (Theoretical Investigation of 2DOF Vibrating System and Its Application to Dynamic Vibration Absorber)

  • 장선준;;;정형조
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.125-129
    • /
    • 2009
  • 본 연구에서는 동강성법을 이용하여 2자유도 진동시스템을 모델링하였다. 등가 모델을 구성한 후 Inertance의 크기에 따라 변화되는 시스템의 특성을 규명하였다. 2자유도 진동 시스템을 단일 모우드 소거에 적용할 경우 해석적인 설계 방법론을 1) 감쇠가 없는 경우 2) 1개의 감쇠기를 갖는 경우로 나누어 제시하였다.

  • PDF

An Adaptive Tuned Heave Plate (ATHP) for suppressing heave motion of floating platforms

  • Ruisheng Ma;Kaiming Bi;Haoran Zuo
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.283-299
    • /
    • 2023
  • Structural stability of floating platforms has long since been a crucial issue in the field of marine engineering. Excessive motions would not only deteriorate the operating conditions but also seriously impact the safety, service life, and production efficiency. In recent decades, several control devices have been proposed to reduce unwanted motions, and an attractive one is the tuned heave plate (THP). However, the THP system may reduce or even lose its effectiveness when it is mistuned due to the shift of dominant wave frequency. In the present study, a novel adaptive tuned heave plate (ATHP) is proposed based on inerter by adjusting its inertance, which allows to overcome the limitation of the conventional THP and realize adaptations to the dominant wave frequencies in real time. Specifically, the analytical model of a representative semisubmersible platform (SSP) equipped with an ATHP is created, and the equations of motion are formulated accordingly. Two optimization strategies (i.e., J1 and J2 optimizations) are developed to determine the optimum design parameters of ATHP. The control effectiveness of the optimized ATHP is then examined in the frequency domain by comparing to those without control and controlled by the conventional THP. Moreover, parametric analyses are systematically performed to evaluate the influences of the pre-specified frequency ratio, damping ratio, heave plate sizes, peak periods and wave heights on the performance of ATHP. Furthermore, a Simulink model is also developed to examine the control performance of ATHP in the time domain. It is demonstrated that the proposed ATHP could adaptively adjust the optimum inertance-to-mass ratio by tracking the dominant wave frequencies in real time, and the proposed system shows better control performance than the conventional THP.