• 제목/요약/키워드: inert materials

검색결과 227건 처리시간 0.035초

Characteristics of dry-process based metal nano ink for printed electrodes

  • Kim, Dong-Kwon;Lee, Caroline;Hong, Seong-Je;Kim, Young-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1466-1468
    • /
    • 2009
  • The preparation method of copper nanopowder by dry process for conductive ink was investigated. Inert gas condensation method was used to synthesize copper nanopowder. The produced powders was spherical and sized 10~100nm flowing the conditions. The results showed that input voltage and evaporation rate is critical variables for nano-sized copper powder.

  • PDF

Assessment of gas production and electrochemical factors for fracturing flow-back fluid treatment in Guangyuan oilfield

  • Liu, Yang;Chen, Wu;Zhang, Shanhui;Shi, Dongpo;Zhu, Mijia
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.521-528
    • /
    • 2019
  • Electrochemical method was used for the fracturing flow-back fluid treatment in Guangyuan oilfield. After performing electrolysis, we found that the amount of $H_2$ gas produced by electrode was closely related to the combination mode of electrodes and electrode materials. Using an aluminium electrode resulted in a large $H_2$ production of each electrode combination, whereas inert anode and cathode materials resulted in low $H_2$ production. Then, the relationship between the gas production of $H_2$ and the treatment efficiency of fracturing flow-back fluid in Guangyuan oilfield was studied. Results showed that the turbidity removal and decolourisation rates of fracturing flow-back fluid were high when $H_2$ production was high. If the $H_2$ production of inert electrode was large, the energy consumption of this inert electrode was also high. However, energy consumption when an aluminium anode material was used was lower than that when the inert electrode was used, whereas the corresponding electrode combination production of $H_2$ was larger than that of the inert electrode combination. When the inert electrode was used as anode, the gas production type was mainly $O_2$, and $Cl_2$ was also produced and dissolved in water to form $ClO^-$. $H_2$ production at the cathode was reduced because $ClO^-$ obtained electrons.

Performance Analysis of an Inert Gas Generator for Fire Extinguishing

  • 김수용
    • 연구논문집
    • /
    • 통권29호
    • /
    • pp.5-15
    • /
    • 1999
  • Present study deals with performance analysis of an inert gas generator (IGG) which is to be used as an effective mean to suppress the fire. The IGG uses a turbo jet cycle gas turbine engine to generate inert gas for fire extinguishing. It is generally known that a lesser degree of oxygen content in the product of combustion will increase the effectiveness of fire suppressing. An inert gas generator system with water injection will bring advantages of suffocating and cooling effects which are considered as vital factors for fire extinguishing. As the inert gas is injected to the burning site, it lowers the oxygen content of the air surrounding the flame as well as reduces the temperature around the fire as the vapour in the inert gas evaporates during the time of spreading. Some important aspects of influencing parameters, such as, air excess coefficient. $\alpha$, compressor pressure ratio, $ pi_c$, air temperature before combustion chamber, $T_2$, gas temperature after combustion chamber, $T_3$, mass flow rate of water injection, $M_w$, etc., on the performance of IGG system are investigated. Calculations of total amount of water needed to reduce the turbine exit temperature to pre-set nozzle exit temperature employing a heat exchanger were made to compare the economics of the system. A heat exchanger with two step cooling by water and steam is considered to be better than water cooling only. Computer programs were developed to perform the cycle analysis of the IGG system and heat exchanger considered in the present study.

  • PDF

가스계 청정소화약제의 소화특성과 첨가제에 따른 영향 (Flame Extinguishing Characteristics of Clean Gaseous Agents and Effects of Additives)

  • 신창섭;김성민
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.95-99
    • /
    • 2008
  • Halon was known as a cause of the ozone layer destruction. In 1987, it was designated as one of the ozone-layer-destroying materials in the Montreal Protocol. Therefore substitutes of Halon agent has been developed including inert gas extinguish system, which is one of the most widely used fire extinguishing system. This study intended to increase the efficiency of inert gas extinguishing agent by using inert gas additives. As IG-541 shows high extinguishing power, the experiment was performed to measure the effects of gaseous additives to it. Cup-burner fire extinguishing apparatus was used with n-Heptane fuel. Among many of pure inert gaseous agents, Helium showed the most excellent extinguishing power. When Helium was added to IG-541, fire extinguishing power was increased and the concentration of oxygen in chimney also risen. By adding Helium to IG-541, the effectiveness of inert gas fire extinguishing system is able to be increased.

Molten Salt-Based Carbon-Neutral Critical Metal Smelting Process From Oxide Feedstocks

  • Wan-Bae Kim;Woo-Seok Choi;Gyu-Seok Lim;Vladislav E. Ri;Soo-Haeng Cho;Suk-Cheol Kwon;Hayk Nersisyan;Jong-Hyeon Lee
    • 방사성폐기물학회지
    • /
    • 제21권1호
    • /
    • pp.9-22
    • /
    • 2023
  • Spin-off pyroprocessing technology and inert anode materials to replace the conventional carbon-based smelting process for critical materials were introduced. Efforts to select inert anode materials through numerical analysis and selected experimental results were devised for the high-throughput reduction of oxide feedstocks. The electrochemical properties of the inert anode material were evaluated, and stable electrolysis behavior and CaCu generation were observed during molten salt recycling. Thereafter, CuTi was prepared by reacting rutile (TiO2) with CaCu in a Ti crucible. The formation of CuTi was confirmed when the concentration of CaO in the molten salt was controlled at 7.5mol%. A laboratory-scale electrorefining study was conducted using CuTi(Zr, Hf) alloys as the anodes, with a Ti electrodeposit conforming to the ASTM B299 standard recovered using a pilot-scale electrorefining device.

Nanoscale Metal Powders Production and Applications

  • Gunther, Bernd-H
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.409-415
    • /
    • 2002
  • In this review the methods for production and processing of isolated or agglomerated nanoscale metal particles embedded in organic liquids (nanosuspensions) and polymer matrix composites are elucidated. Emphasis is laid on the techniques of inert gas condensation (IGC) and high pressure sputtering for obtaining highly porous metal powders ("nanopowder") as well as on vacuum evaporation on running liquids for obtaining nanosuspensions. Functional properties and post-processing are outlined in view of applications in the fields of electrically conductive adhesives and anti-microbially active materials for medical articles and consumer goods.mer goods.

Application of a Turbojet Engine for Fire Extinguishing

  • Slitenko, A.F.;Kim, SooYong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.62-69
    • /
    • 2000
  • Present study deals with performance analysis of an inert gas generator (IGG) which can be used as effective means to suppress fire. The IGG uses a turbo-jet engine to generate inert gas for fire extinguishing. It is generally known that a less degree of oxygen content in the product of combustion will increase the effectiveness of fire extinguishing. An inert gas generator system with water injection has advantages of suffocating and cooling effects that are very important factors for fire extinguishing. Some aspects of influencing parameters, such as, air excess coefficient, compressor pressure ratio, air temperature before combustion chamber, gas temperature after combustion chamber, mass flow rate of water injection etc. on the performance of IGG system are investigated.

  • PDF

비활성 요소의 방호 메커니즘 분석 (An Analysis on the Protection Mechanism of Some Inert Reactive Cassettes)

  • 주재현;최준홍;이헌주;이창현
    • 한국군사과학기술학회지
    • /
    • 제15권5호
    • /
    • pp.550-556
    • /
    • 2012
  • In this study, a series of ballistic experiments have been performed to investigate the protection mechanism of some inert reactive cassettes against shaped charge jet. Three kinds of material were tested as a core material of the inert cassettes, i.e. one of rubber materials, a high modulus and high strength composite material used for ballistic protection and a mixture of energetic materials. Parameters such as deformation of the cassettes, occurrence time of jet distortion, leading jet length and residual penetration depth were investigated from the experiments and they were compared to each other quantitatively according to the jet incidence angles. The results show that the increment of cassette deformation caused jet distortion to occur early and jet distortion brought decrease of the length of leading jet. Then the decrease of the length of leading jet accompanied the decrease of residual penetration depth.

자전연소합성법에 의한 SiC 분말 제조시 반응변수의 영향 (The Investigation of Reaction Parameters on the Reactivity in the Preparation of SiC by SHS)

  • 신창윤;원형일;;원창환
    • 한국세라믹학회지
    • /
    • 제43권7호
    • /
    • pp.427-432
    • /
    • 2006
  • The preparation of SiC powder by SHS in the system of $SiO_2-Mg-C$ was investigated in this study. The effects of various processing parameters such as the initial pressure of inert gas in reactor, the content of Mg and C in mixture and the size of $SiO_2$ particles on the synthesis of SiC by SHS methode were investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 5 atm, and as the pressure increased, and the concentration of unreacted Mg decreased. At 50 atm of the initial inert gas pressure in reactor, the optimum composition for the preparation of pure SiC was $SiO_2+2.5Mg+1.2C$. SiC powder synthesized in this condition had a mixture of ${\alpha}-SiC\;and\;{\beta}-SiC$ with an irregular shape and the particle size of $0.5{\sim}0.8{\mu}m$.

자전연소합성법에 의한 TiB2 분말의 제조에 있어 반응성에 대한 반응변수의 고찰 (The Investigation of Reaction Parameters on the Reactivity in the Preparation of TiB2 by SHS)

  • 신창윤;박영철;이혁희;;원창환
    • 한국세라믹학회지
    • /
    • 제43권1호
    • /
    • pp.16-21
    • /
    • 2006
  • The preparation of $TiB_2$ by SHS in $B_2O_3-Mg-TiO_2$ system was investigated in this study. In the preparation of $TiB_2$, the effect on reactivity and reaction products of the initial pressure of inert gas in reactor, the content of Mg and $TiO_2$ in mixture was investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 5atm, and as the pressure increased, the concentration of unreacted Mg decreased and combustion temperature increased. At the initial inert gas pressure in reactor of 50atm, the optimum composition for the preparation of pure $TiB_2$ was $B_2O_3+5Mg+TiO_2$. The $TiB_2$ synthesized in this condition had an irregular shape and the particle size of $1\~3{\mu}m$.