• Title/Summary/Keyword: industrial wood pellet boiler

Search Result 5, Processing Time 0.02 seconds

Development of a High Efficiency Wood Pellet Boiler with Improved Safety (안전성을 고려한 고효율 목재펠릿 보일러 개발)

  • Chung, Chan-Hong;Park, Min-Cheol
    • Journal of Applied Reliability
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • Wood pellet is one of biomass energy fuels, which is produced by compressing woody biomass such as sawdust, planer shavings, and whole-tree removal or tree tops and branches leftover after logging into cylindrical form. Latterly much attention has been paid to wood pellet boiler which is suitable for use at various scales in domestic and industrial furnaces for heat production to replace conventional fossil fuel energy sources since the use of wood pellet that is carbon neutral can alleviate global warming. This study presents the result of developing a high efficiency wood pellet boiler with 55MJ/h capacity. Efficiency has been improved by using a rotating disk burner with a shorter screw feeder. Special attention has been paid to the improvement of the safety of the wood pellet boiler from backfire by adopting a double protecting system composed of a shutter and an air curtain. The result shows that the efficiencies of the wood pellet boiler are 97.2% and 89.2% based on lower and higher heating values, respectively, at 15.1kW of heating output.

Development of Industrial Wood Pellet Boiler with High Safety (안전성이 높은 산업용 목재펠릿 보일러 개발)

  • Chung, Chan Hong;Park, Min Cheol;Lee, Seong Young
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.31-44
    • /
    • 2013
  • Recently, due to the high rise of energy costs and environmental problem issues, much attention has been paid to wood pellets. Wood pellets are produced by compressing woody biomass into cylindrical form. Wood pellets are suitable for use at various scales in industrial furnaces for heat production to replace conventional fossil fuel energy sources since the use of wood pellet that is carbon neutral can alleviate global warming. This study presents the result of developing two industrial wood pellet boilers with high safety having capacities of 290kW and 440kW. Efficiency has been improved by using a rotating screw bar grate burner. Special attention has been paid to the improvement of the safety of the wood pellet boilers from backfire by adopting a triple protecting system composed of a rotary feeder, an air curtain, and a backfire protecting DC-fan.

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service (산림청 지원사업에 따라 보급된 산업용 목재펠릿보일러에서 목재펠릿 연소 시 배출되는 일산화탄소와 질소산화물의 배출 특성 및 배출계수 분석)

  • Kang, Sea Byul;Choi, Kyu Sung;Lee, Hyun Hee;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.597-609
    • /
    • 2018
  • Korea Forest Service has supplied 76 industrial wood pellet boilers from 2011 to 2015 through subsidy programs. Since carbon monoxide (CO) and nitrogen oxides ($NO_x$) generated during boiler combustion are substances that lead to death in the case of acute poisoning, it is very important to reduce emissions. Therefore, the CO and $NO_x$ emission values of 63 boilers excluding the hot air blower and some boilers initially supplied were analyzed. The emission factor was also calculated from the measured exhaust gas concentration (based on exhaust gas $O_2$ concentration of 12%). The average value of CO emitted from industrial wood pellet boilers was 49 ppm and it was confirmed that the CO concentration was decreasing as the years passed. The emission factor of CO was 0.73 g/kg. The average value of $NO_x$ emitted from industrial wood pellet boilers was 67 ppm and the emission factor of $NO_x$ was 1.63 g/kg. Unlike CO, there was no tendency to decrease according to the installation year. Both CO and $NO_x$ measurements met the limits of the Ministry of Environment. These $NO_x$ emission factors were compared with the $NO_x$ emission factors produced by certified low $NO_x$ burners. The $NO_x$ emission factor of industrial wood pellet boilers was about 1.9 times that of certified low $NO_x$ LNG combustors and about 0.92 times that of coal combustion.

Process Modeling of the Coal-firing Power Plant as a Testbed for the Improvement of the System and Equipment (화력발전 시스템 및 설비 개선 실증을 위한 열물질정산 공정모델 개발)

  • Ahn, Hyungjun;Choi, Seukcheun;Lee, Youngjae;Kim, Beom Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.44-54
    • /
    • 2018
  • Heat and mass balance process modeling has been conducted for a coal-firing power plant to be used as a testbed facility for development of various plant systems and equipment. As the material and design of the boiler tube bundle and fuel conversion to the biomass have become major concerns, the process modeling is required to incorporate those features in its calculation. The simulation cases for two different generation load show the satisfying results compared to the operational data from the actual system. Based on the established process conditions, the hypothetical case using wood pellet has also been simulated. Additional calculations for the tube bundle has been conducted regarding the changes in the tube material and design.

Evaluation of Plant Performance during Biomass Co-firing in Pulverized Coal Power Plant (미분탄화력발전에서의 바이오매스 혼소 시 플랜트 성능특성 평가)

  • Mun, Tae-Young;Tefera, Zelalem Tumsa;Lee, Uendo;Lee, Jeung Woo;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.8-17
    • /
    • 2014
  • The aims of this research were to evaluate effects of biomass co-firing to pulverized coal power plants and the variation of co-firing ratios on the plant efficiency related to power consumption of auxiliary system and flue gas characteristics such as production and component by process simulation based on the existing pulverized coal power plant. In this study, four kinds of biomass are selected as renewable fuel candidates for co-firing: wood pellet(WP), palm kernel shell(PKS), empty fruit bunch(EFB) and walnut shell(WS). Process simulation for various biomass fuels and co-firing ratios was performed using a commercial software. Gas side including combustion system and flue gas treatment system was considering with combination of water and steam side which contains turbines, condenser, feed water heaters and pumps. As a result, walnut shell might be the most suitable as co-firing fuel among four biomass since when 10% of walnut shell was co-fired with 90% of coal on thermal basis, flue gas production and power consumption of auxiliary systems were the smallest than those of other biomass co-firing while net plant efficiency was relatively higher than those of other biomass co-firing. However, with increasing walnut shell co-firing ratios, boiler efficiency and net plant efficiency were expected to decrease rather than coal combustion without biomass co-firing.