• Title/Summary/Keyword: industrial property

Search Result 1,684, Processing Time 0.023 seconds

Isolation and Physicochemical Properties of Rice Starch from Rice Flour using Protease (단백질분해효소에 의한 쌀가루로부터 쌀전분의 분리 및 물리화학적 특성)

  • Kim, ReeJae;Oh, Jiwon;Kim, Hyun-Seok
    • Food Engineering Progress
    • /
    • v.23 no.3
    • /
    • pp.193-199
    • /
    • 2019
  • This study aimed to investigate the impact of protease treatments on the yield of rice starch (RST) from frozen rice flours, and to compare the physicochemical properties of RST by alkaline steeping (control) and enzymatic isolation (E-RST) methods. Although the yield of E-RST, prepared according to conditions designed by the modified 23 complete factorial design, was lower than the control, the opposite trends were observed in its purity. E-RST (RST1, isolated for 8 h at 15℃ with 0.5% protease; RST2, isolated for 24 h at 15℃ with 1.5% protease; RST3, isolated for 24 h at 15℃ with 0.5% protease) with the yields above 50% were selected. Amylose contents did not significantly differ for the control and RST2. Relative to the control, solubilities were higher for all E-RST, but swelling power did not significantly differ for E-RST except for RST1. Although all E-RST revealed higher gelatinization temperatures than the control, the reversed trends were found in the gelatinization enthalpy. The pasting viscosities of all E-RST were lower than those of the control. Consequently, the enzymatic isolation method using protease would be a more time-saving and eco-friendly way of preparing RST than the alkaline steeping method, even though its characteristics are different.

A Study on the Characteristics of Patent Innovation in the Service Industry (서비스 산업의 특허권 혁신 특성에 대한 연구)

  • Pyoung Yol Jang
    • Journal of Service Research and Studies
    • /
    • v.14 no.2
    • /
    • pp.82-100
    • /
    • 2024
  • Due to the intensifying global technological competition, the strategic and economic importance of intellectual property such as patents as intangible assets is increasing. The purpose of this study is to understand the current status of patent innovation in the service industry and to derive the characteristics and implications of patent innovation in the service industry. To this end, this study conducted an investigation and analysis to understand the characteristics of patent innovation in the service industry based on the data from the business activity survey. The proportion of patent companies in the service industry, characteristics of each service industry, proportion of each service industry, and the number of patent rights holdings were analyzed. In addition, the trend of patent changes in the service industry was investigated. The service industry was compared and analyzed with other industries based on the results of the analysis of patent innovation in the service industry. In particular, the service industry was divided into four types in terms of the rate of increase in the proportion of patent companies and the ratio of patent holing companies, and the types were derived. Based on the analysis results, the characteristics of patent innovation in the service industry were presented. As a result of the study, the proportion of patent holding companies in the service industry was lower than that of other industries, and the gap with other industries was widening, showing that the patent innovation of service companies is lower than that of other industries. The average number of patents held by service industry companies was lower than that of other industries, and the increase rate of the number of patent rights held was also lower than that of other industries, widening the gap. Patent innovation in the service industry can be divided into four quadrants in terms of the rate of increase in the proportion of patent holding companies and the proportion of patent holding companies, and it has been studied that the service industry needs policy support suitable for the characteristics of patent innovation in the quadrant to which the individual service industry belongs.

A Study on the Effect of Technological Innovation Capability and Technology Commercialization Capability on Business Performance in SMEs of Korea (우리나라 중소기업의 기술혁신능력과 기술사업화능력이 경영성과에 미치는 영향연구)

  • Lee, Dongsuk;Chung, Lakchae
    • Korean small business review
    • /
    • v.32 no.1
    • /
    • pp.65-87
    • /
    • 2010
  • With the advent of knowledge-based society, the revitalization of technological innovation type SMEs, termed "inno-biz" hereafter, has been globally recognized as a government policymakers' primary concern in strengthening national competitiveness, and much effort is being put into establishing polices of boosting the start-ups and innovation capability of SMEs. Especially, in that the inno-biz enables national economy to get vitalized by widening world markets with its superior technology, and thus, taking the initiative of extremely competitive world markets, its growth and development has greater significance. In the case of Korea, the government has been maintaining the policies since the late 1990s of stimulating the growth of SMEs as well as building various infrastructures to foster the start-ups of the SMEs such as venture businesses with high technology. In addition, since the enactment of "Innovation Promotion Law for SMEs" in 2001, the government has been accelerating the policies of prioritizing the growth and development of inno-biz. So, for the sound growth and development of Korean inno-biz, this paper intends to offer effective management strategies for SMEs and suggest proper policies for the government, by researching into the effect of technological innovation capability and technology commercialization capability as the primary business resources on business performance in Korean SMEs in the light of market information orientation. The research is carried out on Korean companies characterized as inno-biz. On the basis of OSLO manual and prior studies, the research categorizes their status. R&D capability, technology accumulation capability and technological innovation system are categorized into technological innovation capability; product development capability, manufacturing capability and marketing capability into technology commercialization capability; and increase in product competitiveness and merits for new technology and/or product development into business performance. Then the effect of each component on business performance is substantially analyzed. In addition, the mediation effect of technological innovation and technology commercialization capability on business performance is observed by the use of the market information orientation as a parameter. The following hypotheses are proposed. H1 : Technology innovation capability will positively influence business performance. H1-1 : R&D capability will positively influence product competitiveness. H1-2 : R&D capability will positively influence merits for new technology and/or product development into business performance. H1-3 : Technology accumulation capability will positively influence product competitiveness. H1-4 : Technology accumulation capability will positively influence merits for new technology and/or product development into business performance. H1-5 : Technological innovation system will positively influence product competitiveness. H1-6 : Technological innovation system will positively influence merits for new technology and/or product development into business performance. H2 : Technology commercializing capability will positively influence business performance. H2-1 : Product development capability will positively influence product competitiveness. H2-2 : Product development capability will positively influence merits for new technology and/or product development into business performance. H2-3 : Manufacturing capability will positively influence product competitiveness. H2-4 : Manufacturing capability will positively influence merits for new technology and/or product development into business performance. H2-5 : Marketing capability will positively influence product competitiveness. H2-6 : Marketing capability will positively influence merits for new technology and/or product development into business performance. H3 : Technology innovation capability will positively influence market information orientation. H3-1 : R&D capability will positively influence information generation. H3-2 : R&D capability will positively influence information diffusion. H3-3 : R&D capability will positively influence information response. H3-4 : Technology accumulation capability will positively influence information generation. H3-5 : Technology accumulation capability will positively influence information diffusion. H3-6 : Technology accumulation capability will positively influence information response. H3-7 : Technological innovation system will positively influence information generation. H3-8 : Technological innovation system will positively influence information diffusion. H3-9 : Technological innovation system will positively influence information response. H4 : Technology commercialization capability will positively influence market information orientation. H4-1 : Product development capability will positively influence information generation. H4-2 : Product development capability will positively influence information diffusion. H4-3 : Product development capability will positively influence information response. H4-4 : Manufacturing capability will positively influence information generation. H4-5 : Manufacturing capability will positively influence information diffusion. H4-6 : Manufacturing capability will positively influence information response. H4-7 : Marketing capability will positively influence information generation. H4-8 : Marketing capability will positively influence information diffusion. H4-9 : Marketing capability will positively influence information response. H5 : Market information orientation will positively influence business performance. H5-1 : Information generation will positively influence product competitiveness. H5-2 : Information generation will positively influence merits for new technology and/or product development into business performance. H5-3 : Information diffusion will positively influence product competitiveness. H5-4 : Information diffusion will positively influence merits for new technology and/or product development into business performance. H5-5 : Information response will positively influence product competitiveness. H5-6 : Information response will positively influence merits for new technology and/or product development into business performance. H6 : Market information orientation will mediate the relationship between technology innovation capability and business performance. H7 : Market information orientation will mediate the relationship between technology commercializing capability and business performance. The followings are the research results : First, as for the effect of technological innovation on business performance, the technology accumulation capability and technological innovating system have a positive effect on increase in product competitiveness and merits for new technology and/or product development, while R&D capability has little effect on business performance. Second, as for the effect of technology commercialization capability on business performance, the effect of manufacturing capability is relatively greater than that of merits for new technology and/or product development. Third, the mediation effect of market information orientation is identified to exist partially in information generation, information diffusion and information response. Judging from these results, the following analysis can be made : On Increase in product competitiveness, directly related to successful technology commercialization of technology, management capability including technological innovation system, manufacturing capability and marketing capability has a relatively strong effect. On merits for new technology and/or product development, on the other hand, capability in technological aspect including R&D capability, technology accumulation capability and product development capability has relatively strong effect. Besides, in the cast of market information orientation, the level of information diffusion within an organization plays and important role in new technology and/or product development. Also, for commercial success like increase in product competitiveness, the level of information response is primarily required. Accordingly, the following policies are suggested : First, as the effect of technological innovation capability and technology commercialization capability on business performance differs among SMEs; in order for SMEs to secure competitiveness, the government has to establish microscopic policies for SMEs which meet their needs and characteristics. Especially, the SMEs lacking in capital and labor are required to map out management strategies of focusing their resources primarily on their strengths. And the government needs to set up policies for SMEs, not from its macro-scaled standpoint, but from the selective and concentrative one that meets the needs and characteristics of respective SMEs. Second, systematic infrastructures are urgently required which lead technological success to commercial success. Namely, as technological merits at respective SME levels do not always guarantee commercial success, the government should make and effort to build systematic infrastructures including encouragement of M&A or technology trade, systematic support for protecting intellectual property, furtherance of business incubating and industrial clusters for strengthening academic-industrial network, and revitalization of technology financing, in order to make successful commercialization from technological success. Finally, the effort to innovate technology, R&D, for example, is essential to future national competitiveness, but its result is often prolonged. So the government needs continuous concern and funding for basic science, in order to maximize technological innovation capability. Indeed the government needs to examine continuously whether technological innovation capability or technological success leads satisfactorily to commercial success in market economic system. It is because, when the transition fails, it should be left to the government.

Dynamical Study on the Blasting with One-Free-Face to Utilize AN-FO Explosives (초유폭약류(硝油爆藥類)를 활용(活用)한 단일자유면발파(單一自由面發破)의 역학적(力學的) 연구(硏究))

  • Huh, Ginn
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.187-209
    • /
    • 1972
  • Drilling position is one of the most important factors affecting on the blasting effects. There has been many reports on several blasting factors of burn-cut by Messrs. Brown and Cook, but in this study the author tried to compare drilling positions of burn-cut to pyramid-cut, and also to correlate burn-cut effects of drilling patterns, not being dealt by Prof. Ito in his theory, which emphasized on dynamical stress analysis between explosion and free face. According to former theories, there break out additional tensile stress reflected at the free face supplemented to primary compressive stress on the blasting with one-free-face. But with these experimented new drilling patterns of burn-cut, more free faces and nearer distance of each drilling holes make blasting effects greater than any other methods. To promote the above explosive effect rationary, it has to be considered two important categories under-mentioned. First, unloaded hole in the key holes should be drilled in wider diameter possibly so that it breaks out greater stress relief. Second, key holes possibly should have closer distances each other to result clean blasting. These two important factors derived from experiments with, theories of that the larger the dia of the unloaded hole, it can be allowed wider secondary free faces and closes distances of each holes make more developed stress relief, between loaded and unloaded holes. It was suggested that most ideal distance between holes is about 4 clearance in U. S. A., but the author, according to the experiments, it results that the less distance allow, the more effective blasting with increased broken rock volume and longer drifted length can be accomplished. Developed large hole burn-cut method aimed to increase drifting length technically under the above considerations, and progressive success resulted to achieve maximum 7 blasting cycles per day with 3.1m drifting length per cycle. This achievement originated high-speed-drifting works, and it was also proven that application of Metallic AN-FO on large hole burn-cut method overcomes resistance of one-free-face. AN-FO which was favored with low price and safety handling is the mixture of the fertilizer or industrial Ammonium-Nitrate and fuel oil, and it is also experienced that it shows insensible property before the initiation, but once it is initiated by the booster, it has equal explosive power of Ammonium Nitrate Explosives (ANE). There was many reports about AN-FO. On AN-FO mixing ratio, according to these experiments, prowdered AN-FO, 93.5 : 6.5 and prilled AN-FO 94 : 6, are the best ratios. Detonation, shock, and friction sensities are all more insensitive than any other explosives. Residual gas is not toxic, too. On initation and propagation of the detonation test, prilled AN-FO is more effective than powered AN-FO. AN-FO has the best explosion power at 7 days elapsed after it has mixed. While AN-FO was used at open pit in past years prior to other conditions, the author developed new improved explosives, Metallic AN-FO and Underwater explosive, based on the experiments of these fundmental characteristics by study on its usage utilizing AN-FO. Metallic AN-FO is the mixture of AN-FO and Al, Fe-Si powder, and Underwater explosive is made from usual explosive and AN-FO. The explanations about them are described in the other paper. In this study, it is confirmed that the blasting effects of utilizing AN-FO explosives are very good.

  • PDF