• 제목/요약/키워드: industrial method using vacuum pump

검색결과 6건 처리시간 0.023초

루츠형 중진공펌프 국산화 개발 (Development of Localized Roots Type Medium-Vacuum Pump)

  • 탁봉열;김병덕;양해경;한기영;이소아
    • 한국유체기계학회 논문집
    • /
    • 제14권3호
    • /
    • pp.23-27
    • /
    • 2011
  • Due to a roots type medium vacuum pump is operated in condition of $1{\sim}10^{-3}$ torr vacuum, it could be applied for production and process of industrial parts, such as precise processing, vaporization, enrichment, separation, casting, metaling, welding, transportation. Therefore, the demand of this pump is increasing nowadays in our industrial markets of semiconductor, electric, electronic, automobile, material, environmental and transporting industries. However, the pumps are almost imported, because the domestic pumps are inferior in fields of vacuum range as under $10^{-1}$torr, relevant techniques(design, fabrication, casting, test, etc.) to the imported ones. In this study, essential parts of the development pump are designed with using of CFD and 3D decodes, FEM for analysing strength and deformation, generated heat, vibration and noise control, and are casted with using of mechanochemistry techniques for decreasing of weights, increasing of heat resistances and abrasion durability of materials for pump caing and impellers especially. Besides, in order to achieve ultimate vacuum around $10^{-3}$torr, this pump is composed of 6 stages, among which 1st stage is operated separately from remained stages. Additionally, a test rig for prototype pumps(300$m^3/h$ and 2,500$m^3/h$) is designed and procured as to apply for multi-staged rootz type vacuum pump, with modification of the test method recommended by KS B 6314 "Positive-displacement oil-sealed rotary vacuum pumps".

수치해석을 이용한 오물 처리용 진공펌프의 성능평가 (A Numerical Study on the Performance Evaluation of the Vacuum Pump for Waste Treatment)

  • 이힘찬;김준형;윤준용;김창조;최영석
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.53-58
    • /
    • 2014
  • Vacuum pump transfers waste that is pulverized by integrated macerator. For this reason, unlike ordinary pump systems, there is a rotating macerator ahead of impeller for pulverizing. It is hard to predict numerical solution because area of Inlet flow path changes according to the rotation angle of the integrated macerator. So, in this study, the verification of performance evaluation method of Marine vacuum pump were numerically studied by commercial ANSYS CFX 13.0 software. We select a model of performance evaluation for study, and we analyze change of inlet flow path of integrated macerator according to rotation angle. We generate 5 model sets according to rotation angle of the integrated macerator. And we evaluate their performance by numerical analysis. Then, we analyze internal flow field and performance according to rotation angle of the integrated macerator based on numerical analysis result. In addition, we compared with experimental data for validity of numerical result by using steady state analysis.

Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite

  • Mohammadimehr, M.;Mohammadi-Dehabadi, A.A.;Akhavan Alavi, S.M.;Alambeigi, K.;Bamdad, M.;Yazdani, R.;Hanifehlou, S.
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.405-422
    • /
    • 2018
  • In this research, experimental tensile test and manufacturing of carbon nanotube reinforced composite beam (CNTRC) is presented. Also, bending, buckling, and vibration analysis of CNTRC based on various beam theories such as Euler-Bernoulli, Timoshenko and Reddy beams are considered. At first, the experimental tensile tests are carried out for CNTRC and composite beams in order to obtain mechanical properties and then using Hamilton's principle the governing equations of motion are derived for Euler Bernoulli, Timoshenko and Reddy theories. The results have a good agreement with the obtained results by similar researches and it is shown that adding just two percent of carbon nanotubes increases dimensionless fundamental frequency and critical buckling load as well as decreases transverse deflection of composite beams. Also, the influences of different manufacturing processes such as hand layup and industrial methods using vacuum pump on composite properties are investigated. In these composite beams, glass fibers used in an epoxy matrix and for producing CNTRC, CNTs are applied as reinforcement particles. Applying two percent of CNTs leads to increase the mechanical properties and increases natural frequencies and critical buckling load and decreases deflection. The obtained natural frequencies and critical buckling load by theoretical method are higher than other methods, because there are some inevitable errors in industrial and hand layup method. Also, the minimum deflection occurs for theoretical methods, in bending analysis. In this study, Young's and shear modulli as well as density are obtained by experimental test and have not been used from the results of other researches. Then the theoretical analysis such as bending, buckling and vibration are considered by using the obtained mechanical properties of this research.

석면분석 정도관리용 표준시료 개발연구 I - 석면분석 정도관리용 표준시료 제조장치 개발 및 시료제조 방법 확립 - (Development of Asbestos Quality Control Sample for Proficiency Analytical Testing 1 - Development of Manufacturing Apparatus and Sample Preparing Procedure for Asbestos Quality Control Sample -)

  • 이광용;이종한;정시정;박두용
    • 한국산업보건학회지
    • /
    • 제19권2호
    • /
    • pp.81-87
    • /
    • 2009
  • Final purpose of this study was designed to develop the quality control(QC) sample for proficiency analytical testing of asbestos. This study consisted of two parts; first, development of manufacturing apparatus and sample preparing procedure for asbestos quality control(QC) sample: second, validation of the QC samples made by our developed method as asbestos proficiency analytical testing sample. The main results of the first part research are as followed We developed the apparatus for manufacturing the asbestos QC sample, consisted of filter hold, filter holder manifolder, vacuum system, and vacuum pump. The most proper filter of making the QC samples was a cellulose ester membrane filter with 25 mm diameter, pore size 0.8 um. And we presented the optimal procedure for preparing the asbestos QC sample by using the developed apparatus. We will verify the manufactured asbestos QC samples by this method, and present the validation results to confirm the reliability as a asbestos QC sample in next paper.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석 (Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods)

  • 서영성;임근원
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.622-628
    • /
    • 2016
  • 자동차에 부착하여 사용하는 자전거 캐리어 지지용 흡착 패드는 운행 중 임의의 진동과 원심력과 같은 과도한 동적 하중을 받을 수 있어, 구조 안전성의 검토가 중요하다. 이를 위해서는 유체-구조 연계 유한요소해석을 이용하여 패드의 하부 압력이 패드에 가해지는 하중이나 모멘트의 변화에 따라 실시간으로 변화하는 것을 고려하여야 하나, 실제 상황의 모델링이 어렵고 계산을 위한 소프트웨어 비용이 높은 단점이 있기도 하지만, 정확한 결과를 얻기도 어렵다. 따라서 이 논문에서는 실험과 전산적인 방법을 조합하여 활용하는 새로운 방법을 제시한다. 이는 변화하는 하중에 따라 패드 하부의 압력과 접촉 면적을 실시간으로 측정하고 여기서 얻어진 데이터를 비선형 탄성 유한요소해석에 입력하여 활용하는 방법이다. 개발 단계의 제품 형상으로 실험 및 계산을 수행한 결과, 마운트 패드는 축 방향 하중에 대해서는 비교적 안전하나, 회전 하중이 과도하게 작용할 경우 패드가 바닥으로부터 분리되거나 패드 표면에 국부적인 손상이 일어날 수 있어 안전 여유가 많지 않음을 보여주었다. 작용하는 하중의 크기 및 형태에 따라 변화하는 접촉 거동을 예측하는 결과는 실험 결과와 잘 일치하였다. 본 연구에서 제안하는 해석 방법은 유사한 흡착 패드 시스템을 설계할 때 유용하게 활용될 수 있을 것으로 보인다.