• Title/Summary/Keyword: industrial design

Search Result 11,473, Processing Time 0.04 seconds

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.

A Study on the Production, Supply and Demand of Najeonchil Craft Works with a Focus on the Artisan, Min Jong-tae (나전칠 공예품 제작과 수급(需給)에 관한 연구 - 나전칠기장 민종태 제작 활동를 중심으로 -)

  • CHAE Young
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.100-115
    • /
    • 2023
  • The modernization of najeonchil, or mother-of-pearl lacquerware, began in the latter era of the Joseon period and started to set in during the phase of industrial development after the Korean War. Especially, the rise and fall of najeonchil during the first half of the 1900s fluctuated more compared to other types of craft. This paper focuses on the production, supply and demand activities of the works by Min Jong-tae, who was born in 1915, began his career in 1929 and devoted 70 years of his life creating najeonchil craft and furniture. As an apprentice under Jeon Sung-gyu, who revived the craft of najeonchil, Min Jong-tae was not only an artisan who ranked alongside Kim Bongryong, Song Juan, Shim Bugil, Kim Taehee, but also a businessman. In particular, Min led the boom of modern najeonchilgi during the 1970s-80s in Seoul, which was the most important market at that time. However, studies about Min Jong-tae are almost non-existence, despite his accomplishments. This study first describes how Min Jong-tae began the craft of najeonchil and early days of his career around the liberation period, then retraced his efforts in building a supply and demand system in the 1950s-60s. Moreover, this paper covers not only his creations of large-scale najeonchil furniture in the advent of an era of 'wardrobe culture' in the 1970s-80s, but also his exported pieces to Japan, including incense boxes and tea containers. In conclusion, this research derives the historical significance of Min Jong-tae's role as an artisan of najeonchil- designated as Seoul Intangible Cultural Heritage No. 14 in the field of craft.

Acoustic Emission (AE) Technology-based Leak Detection System Using Macro-fiber Composite (MFC) Sensor (Macro fiber composite (MFC) 센서를 이용한 음향방출 기술 기반 배관 누수 감지 시스템)

  • Jaehyun Park;Si-Maek Lee;Beom-Joo Lee;Seon Ju Kim;Hyeong-Min Yoo
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.429-434
    • /
    • 2023
  • In this study, aimed at improving the existing acoustic emission sensor for real time monitoring, a macro-fiber composite (MFC) transducer was employed as the acoustic emission sensor in the gas leak detection system. Prior to implementation, structural analysis was conducted to optimize the MFC's design. Consequently, the flexibility of the MFC facilitated excellent adherence to curved pipes, enabling the reception of acoustic emission (AE) signals without complications. Analysis of AE signals revealed substantial variations in parameter values for both high-pressure and low-pressure leaks. Notably, in the parameters of the Fast Fourier Transform (FFT) graph, the change amounted to 120% to 626% for high-pressure leaks compared to the case without leaks, and approximately 9% to 22% for low-pressure leaks. Furthermore, depending on the distance from the leak site, the magnitude of change in parameters tended to decrease as the distance increased. As the results, in the future, not only will it be possible to detect a leak by detecting the amount of parameter change in the future, but it will also be possible to identify the location of the leak from the amount of change.

Comparing Physical and Thermal Environments Using UAV Imagery and ENVI-met (UAV 영상과 ENVI-met 활용 물리적 환경과 열적 환경 비교)

  • Seounghyeon KIM;Kyunghun PARK;Bonggeun SONG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.145-160
    • /
    • 2023
  • The purpose of this study was to compare and analyze diurnal thermal environments using Unmanned Aerial Vehicles(UAV)-derived physical parameters(NDVI, SVF) and ENVI-met modeling. The research findings revealed significant correlations, with a significance level of 1%, between UAV-derived NDVI, SVF, and thermal environment elements such as S↑, S↓, L↓, L↑, Land Surface Temperature(LST), and Tmrt. In particular, NDVI showed a strong negative correlation with S↑, reaching a minimum of -0.52** at 12:00, and exhibited a positive correlation of 0.53** or higher with L↓ at all times. A significant negative correlation of -0.61** with LST was observed at 13:00, suggesting the high relevance of NDVI to long-wavelength radiation. Regarding SVF, the results showed a strong relationship with long-wave radiative flux, depending on the SVF range. These research findings offer an integrated approach to evaluating thermal comfort and microclimates in urban areas. Furthermore, they can be applied to understand the impact of urban design and landscape characteristics on pedestrian thermal comfort.

Analysis of Global Entrepreneurship Trends Due to COVID-19: Focusing on Crunchbase (Covid-19에 따른 글로벌 창업 트렌드 분석: Crunchbase를 중심으로)

  • Shinho Kim;Youngjung Geum
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.3
    • /
    • pp.141-156
    • /
    • 2023
  • Due to the unprecedented worldwide pandemic of the new Covid-19 infection, business trends of companies have changed significantly. Therefore, it is strongly required to monitor the rapid changes of innovation trends to design and plan future businesses. Since the pandemic, many studies have attempted to analyze business changes, but they are limited to specific industries and are insufficient in terms of data objectivity. In response, this study aims to analyze business trends after Covid-19 using Crunchbase, a global startup data. The data is collected and preprocessed every two years from 2018 to 2021 to compare the business trends. To capture the major trends, a network analysis is conducted for the industry groups and industry information based on the co-occurrence. To analyze the minor trends, LDA-based topic modelling and word2vec-based clustering is used. As a result, e-commerce, education, delivery, game and entertainment industries are promising based on their technological advances, showing extension and diversification of industry boundaries as well as digitalization and servitization of business contents. This study is expected to help venture capitalists and entrepreneurs to understand the rapid changes under the impact of Covid-19 and to make right decisions for the future.

  • PDF

Analysis of grout injection distance in single rock joint (단일절리 암반에서 그라우팅 주입거리 분석)

  • Ji-Yeong Kim;Jo-Hyun Weon;Jong-Won Lee;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.541-554
    • /
    • 2023
  • The utilization of underground spaces in relation to tunnels and energy/waste storage is on the rise. To ensure the stability of underground spaces, it is crucial to reinforce rock fractures and discontinuities. Discontinuities, such as joints, can weaken the strength of the rock and lead to groundwater inflow into underground spaces. In order to enhance the strength and stability of the area around these discontinuities, rock grouting techniques are employed. However, during rock grouting, it is impossible to visually confirm whether the grouting material is being smoothly injected as intended. Without proper injection, the expected increases in strength, durability, and degree of consolidation may not be achieved. Therefore, it is necessary to predict in advance whether the grouting material is being injected as designed. In this study, we aimed to assess the injection performance based on injection variables such as the water/cement mixture ratio, injection pressure, and injection flow using UDEC (Universal Distinct Element Code) numerical program. Additionally, numerical results were validated by the lab experiment. The results of this study are expected to help optimize variables such as injection material properties, injection time, and pump pressure in the grouting design in the field.

Agent Model Construction Methods for Simulatable CPS Configuration (시뮬레이션 가능한 CPS 구성을 위한 에이전트 모델 구성 방법)

  • Jinmyeong Lee;Hong-Sun Park;Chan-Woo Kim;Bong Gu Kang
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • A cyber-physical system is a technology that connects the physical systems of a manufacturing environment with a cyber space to enable simulation. One of the major challenges in this technology is the seamless communication between these two environments. In complex manufacturing processes, it is crucial to adapt to various protocols of manufacturing equipment and ensure the transmission and reception of a large volume of data without delays or errors. In this study, we propose a method for constructing agent models for real-time simulation-capable cyberphysical systems. To achieve this, we design data collection units as independent agent models and effectively integrate them with existing simulation tools to develop the overall system architecture. To validate the proposed structure and ensure reliability, we conducted empirical testing by integrating various equipment from a real-world smart microfactory system to assess the data collection capabilities. The experiments involved testing data delay and data gaps related to data collection cycles. As a result, the proposed approach demonstrates flexibility by enabling the application of various internal data collection methods and accommodating different data formats and communication protocols for various equipment with relatively low communication delays. Consequently, it is expected that this approach will promote innovation in the manufacturing industry, enhance production line efficiency, and contribute to cost savings in maintenance.

Development of Web-based Construction-Site-Safety-Management Platform Using Artificial Intelligence (인공지능을 이용한 웹기반 건축현장 안전관리 플랫폼 개발)

  • Siuk Kim;Eunseok Kim;Cheekyeong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.77-84
    • /
    • 2024
  • In the fourth industrial-revolution era, the construction industry is transitioning from traditional methods to digital processes. This shift has been challenging owing to the industry's employment of diverse processes and extensive human resources, leading to a gradual adoption of digital technologies through trial and error. One critical area of focus is the safety management at construction sites, which is undergoing significant research and efforts towards digitization and automation. Despite these initiatives, recent statistics indicate a persistent occurrence of accidents and fatalities in construction sites. To address this issue, this study utilizes large-scale language-model artificial intelligence to analyze big data from a construction safety-management information network. The findings are integrated into on-site models, which incorporate real-time updates from detailed design models and are enriched with location information and spatial characteristics, for enhanced safety management. This research aims to develop a big-data-driven safety-management platform to bolster facility and worker safety by digitizing construction-site safety data. This platform can help prevent construction accidents and provide effective education for safety practices.

Research on soil composition measurement sensor configuration and UI implementation (토양 성분 측정 센서 구성 및 UI 구현에 관한 연구)

  • Ye Eun Park;Jin Hyoung Jeong;Jae Hyun Jo;Young Yoon Chang;Sang Sik Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.76-81
    • /
    • 2024
  • Recently, agricultural methods are changing from experience-based agriculture to data-based agriculture. Changes in agricultural production due to the 4th Industrial Revolution are largely occurring in three areas: smart sensing and monitoring, smart analysis and planning, and smart control. In order to realize open-field smart agriculture, information on the physical and chemical properties of soil is essential. Conventional physicochemical measurements are conducted in a laboratory after collecting samples, which consumes a lot of cost, labor, and time, so they are quickly measured in the field. Measurement technology that can do this is urgently needed. In addition, a soil analysis system that can be carried and moved by the measurer and used in Korea's rice fields, fields, and facility houses is needed. To solve this problem, our goal is to develop and commercialize software that can collect soil samples and analyze the information. In this study, basic soil composition measurement was conducted using soil composition measurement sensors consisting of hardness measurement and electrode sensors. Through future research, we plan to develop a system that applies soil sampling using a CCD camera, ultrasonic sensor, and sampler. Therefore, we implemented a sensor and soil analysis UI that can measure and analyze the soil condition in real time, such as hardness measurement display using a load cell and moisture, PH, and EC measurement display using conductivity.

The Differential Impacts of Temporary Aberration on Online Review Consumption and Generation (온라인 리뷰 소비 및 생성에 대한 일시적 이상 현상의 차등 효과)

  • Junyeong Lee;Hyungjin Lukas Kim
    • Information Systems Review
    • /
    • v.23 no.3
    • /
    • pp.127-158
    • /
    • 2021
  • Many online travel agencies (OTAs) provide average ratings and time-relevant information or the most recently posted reviews regarding hotels to satisfy customers. To identify these two factors' relative influence on behavioral decision-making processes, we conducted two studies: (1) an experimental research design to explore the relative influence of the two on online review consumption and (2) an empirical approach to examine their relative impact on online review generation. The results show that when review posters observe an inconsistency between average ratings and recent reviews, they tend to deviate from the recent reviews regardless of the overall direction (reactance behavior). Meanwhile, review consumers tend to conform to the opinions presented in recent reviews (herding behavior). Additionally, in both cases, the effects are amplified in case of a negative aberration. Based on the findings, this study provides theoretical and practical implications regarding the relative influences of average rating and recently posted reviews and their different impacts on online review consumption and generation.