• Title/Summary/Keyword: induction number

Search Result 811, Processing Time 0.031 seconds

Analysis of electromagnetic force of a high-speed tractive induction motor (고속전철용 견인 유도전동기의 전자력 해석)

  • Kim, B.T.;Kwon, B.I.;Park, S.C.;Lee, K.H.;Kim, K.W.;Yoon, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.73-75
    • /
    • 1998
  • Electromagnetic forces as a source of vibration and noise are analyzed and compared for an induction motor with different rotor slot number each other which drive high speed trains. Time stepped finite element method is used to analyze electromagnetic field considering the voltage harmonics supplied from a inverter. As a result, a rotor slot number is determined to reduce the harmonics of electromagnetic forces.

  • PDF

QUANTIZATION FOR A PROBABILITY DISTRIBUTION GENERATED BY AN INFINITE ITERATED FUNCTION SYSTEM

  • Roychowdhury, Lakshmi;Roychowdhury, Mrinal Kanti
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.765-800
    • /
    • 2022
  • Quantization for probability distributions concerns the best approximation of a d-dimensional probability distribution P by a discrete probability with a given number n of supporting points. In this paper, we have considered a probability measure generated by an infinite iterated function system associated with a probability vector on ℝ. For such a probability measure P, an induction formula to determine the optimal sets of n-means and the nth quantization error for every natural number n is given. In addition, using the induction formula we give some results and observations about the optimal sets of n-means for all n ≥ 2.

Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

  • Kim, Nam In;Kim, Young Sik;Kim, Kyung Soo;Chang, Hyun Young;Park, Heung Bae;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001~0.075% were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel.

An Indirect Vector Control System of Induction Motor using Genetic Algorithm based PI Controller (GA-PI제어기를 이용한 유도전동기 간접 벡터제어 시스템)

  • Lee, Hak-Ju;Kwon, Sung-Chul;Seong, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1155-1157
    • /
    • 2002
  • This paper presents the use of a simple genetic algorithm for the tuning of a proportional-integral speed controller for an induction motor drive. The influence of population size, generation number and rate of mutation on the convergence of the genetic algorithm is investigated. On Matlab/Simulink environment, this paper proposes an optimal GA-PI controller of indirect vector control for induction motor drive system. The simulation results verify that the system has a more robust to the parameter variation than classical PI controller.

  • PDF

A Study on the Characteristic Analysis of Winding Method and Slot Structure for Single Phase Induction Motor (단상유도기의 권선법 및 슬롯 구조에 따른 특성 해석 연구)

  • Hwang, Yo-Han;Kim, Ki-Chan;Won, Sung-Hong;Jung, Dae-Sung;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.203-205
    • /
    • 2006
  • This paper presents a study on the winding method and structure of core of single phase induction motor in order to design the high efficiency motor. In case of single phase induction motor, winding fill factor and the number of turns in each slot are not uniform in general. Moreover, these can be the critical parameters for high efficiency design in case the size of motor should be restricted within certain volume. Therefore, we should analyze the effects of these parameters related to efficiency parameter. The characteristic analysis was performed by using FEM.

  • PDF

Speed Estimation of Induction Motor in Steady State Using the RSH (RSH를 이용한 정상상태 운전 유도전동기의 회전속도 추정)

  • Yang, Chul-Oh;Park, Kyu-Nam;Song, Myung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1783-1787
    • /
    • 2011
  • The slip frequency is included in feature frequency for fault diagnosis of rotor bar, so rotating rotor speed is needed. In this study, rotor slot harmonic(RSH) method is suggested for speed estimation of induction motor. When the rotor is rotating, motor current signal include the harmonic signal of back-emf voltage related with number of rotor slot. So from the power spectrum of current signal, the rotor speed can be founded. This method of rotor speed estimation gives the slip frequency, and the feature frequency of rotor bar fault can be calculated. Comparing with stroboscope speed meter, the error rate of suggested method is less than 0.1[%].

A Simulation of I-PDA Controller for Induction Motor

  • Choo, Yeon-Cyu;Kim, Seung-Cheol;Lee, Ihn-Yong;Cho, Yong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1521-1523
    • /
    • 2005
  • PID controller is applied mostly to two-order system. In third-order or higher- system, it's impossible to get high response quality because of having more zero point than the number of zero point being in the PID controller. To solve those, Jung & Dorf suggested a new type of PIDA controller and solved problen of a third-order system.. But, as the result of getting step response using PIDA controller, rising time is very quickly but wide overshoot is happened. Beside designing PIDA controller with using CDM(Coefficient Diagram Method) of Shunji Manabe decreases overshoot to desired but rising time is very slow. Therefore this paper suggest a I-PDA controller for low overshoot and fast responsibility. This paper applied designed PD-PIDA controller to position control of 3-Phase induction motor.

  • PDF

Reduction of Components in New Family of Diode Clamp Multilevel Inverter Ordeal to Induction Motor

  • Angamuthu, Rathinam;Thangavelu, Karthikeyan;Kannan, Ramani
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.58-69
    • /
    • 2016
  • This paper describes the design and implementation of a new diode clamped multilevel inverter for variable frequency drive. The diode clamp multilevel inverter has been widely used for low power, high voltage applications due to its superior performance. However, it has some limitations such as increased number of switching devices and complex PWM control. In this paper, a new topology is proposed. New topology requires only (N-1) switching devices and (N-3) clamping diodes compared to existing topology. A modified APO-PWM control method is used to generate gate pulses for inverter. The proposed inverter topology is coupled with single phase induction motor and its performance is tested by MATLAB simulation. Finally, a prototype model has built and its performance is tested with single phase variable frequency drive.

Optimal Construction of Rotary-Linear Induction Motor (회전-리니어 병용 유도전동기의 특성해석)

  • Onuki, Takashi;Jeon, Woo-Jin;Tanabiki, Masamoto;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.130-132
    • /
    • 1997
  • In this paper, we propose a new type of tubular linear induction motor(TLIM) with two-dimensional motion. The proposed motor consists of four short primary LIMs arranged on a same circumference and a common secondary. By adopting independently energized ring-windings to the primary, we can expect the reduction of coil-end region and the freedom of alternating current supply. The secondary conductor is capable of producing anyone of rotary, linear, and helical motions by controlling the phase of supply currents in each primary winding. From the 3-D finite element analysis and the experiment, we derive the feeding conditions to increase the subsidiary rotary-force and an optimal arrangement of primary currents to reduce the number of slot.

  • PDF

Low Cost Motor Drive Technologies for ASEAN Electric Scooter

  • Tuan, Vu Tran;Kreuawan, Sangkla;Somsiri, Pakasit;Huy, Phuong Nguyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1578-1585
    • /
    • 2018
  • This work investigates two different motor drive technologies, switched reluctance motor (SRM) and induction motor (IM). They are designed optimally to meet the desired performances for electric scooters. The comparison of both motors is described in terms of performances and material cost. With the similar constraint, induction motor performs slightly better than switched reluctance motor. But this must be traded-off with higher weight and cost. Both drive systems are, however, suitable for electric scooter application. Finally, the range simulations are conducted on a European urban driving cycle, ECE15 driving cycle and a more realistic cycle, Bangkok driving cycle. The e-scooter ranges are varied from 36 to 109 km depending on driving cycle, motor technology and number of passengers.