• 제목/요약/키워드: inductance parameters

검색결과 236건 처리시간 0.027초

완전 정지형 방식에 의한 유도 전동기 파라미터 오토튜닝 (Identification of Parameters for Induction Motor at Standstill)

  • 김정하;홍찬욱;권봉현;임계영
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.900-903
    • /
    • 2003
  • An identification method of induction motor parameters such as rotor time constant and mutual inductance at standstill condition is discussed assuming that stator resistance and leakage has already been obtained applying two different DC voltage and single phase voltage to the induction motor, respectively. This proposed scheme is implemented by means of Model Reference Adaptive Control (MRAC) technique, which uses a rotor flux equation in voltage model as a reference model and one in current model and is demonstrated through experiment.

  • PDF

반응표면법과 유한요소법을 이용한 단상 스위치드 릴럭턴스 전동기의 최적 설계 (Single Phase Switched Reluctance Motor Optimum Design Using Response Surface Methodology and Finite Element Method)

  • 임승빈;최재학;박재범;손영규;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.596-607
    • /
    • 2006
  • This paper presents Single Phase Switched Reluctance Motor (SPSRM) optimum design for vacuum cleaners using Response Surface Methodology (RSM) to determine geometric parameters, and the 2-D Finite Element Method (FEM) has been coupled with the circuit equations of the driving converter. Additionally, an optimum process for SPSRM has been proposed and peformed with geometric and electric parameters thereby influencing the inductance variation and effective torque generation as design variables. SPSRM performances have also been analyzed to determine an optimal design model for maximized efficiency at high power factor. In order to confirm the propriety of the Finite Element Method and motor performance calculation, simulation waveform and experiment waveform for motor voltage and current were compared.

Transient Simulation Studies of Squirrel-Cage Induction Motor Directly Supplied with Aircraft Variable Frequency Power

  • Du, Xiaofei;Wang, Deqiang;Zhou, Yuanjun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권1호
    • /
    • pp.7-14
    • /
    • 2014
  • Aircraft variable frequency power and a new application of induction motor under the aero-power are introduced. The transient models and simulation of induction motor are reviewed. A new transient model and simulation method is presented that includes deep-bar effect and magnetic saturation. Dynamic magnetizing inductance, rotor resistance and leakage reactance are considered as varying parameters in state-space model. Base on known rotor structure and speed, these parameters can be calculated.

RE circuit simulation for high-power LDMOS modules

  • fujioka, Tooru;Matsunaga, Yoshikuni;Morikawa, Masatoshi;Yoshida, Isao
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.1119-1122
    • /
    • 2000
  • This paper describes on RF circuit simulation technique, especially on a RF modeling and a model extraction of a LDMOS(Lateral Diffused MOS) that has gate-width (Wg) dependence. Small-signal model parameters of the LDMOSs with various gate-widths extracted from S-parameter data are applied to make the relation between the RF performances and gate-width. It is proved that a source inductance (Ls) was not applicable to scaling rules. These extracted small-signal model parameters are also utilized to remove extrinsic elements in an extraction of a large-signal model (using HP Root MOSFET Model). Therefore, we can omit an additional measurement to extract extrinsic elements. When the large-signal model with Ls having the above gate-width dependence is applied to a high-power LDMOS module, the simulated performances (Output power, etc.) are in a good agreement with experimental results. It is proved that our extracted model and RF circuit simulation have a good accuracy.

  • PDF

Analysis of Magnetic Permeability Spectra of Metamaterials Composed of Cut Wire Pairs by Circuit Theory

  • Lim, Jun-Hee;Kim, Sung-Soo
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.187-191
    • /
    • 2016
  • Retrieving the equivalent electromagnetic parameters (permittivity and permeability) plays an important role in the research and application of metamaterials. Frequency dispersion of magnetic permeability has been theoretically predicted in a metamaterial composed of cut wire pairs (CWP) separated by dielectric substrate on the basis of circuit theory. Magnetic resonance resulting from antiparallel currents between the CWP is observed at the frequency of minimum reflection loss (corresponding to absorption peak) and effective resonator size can be determined. Having calculated the circuit parameters (inductance L, capacitance C) and resonance frequency from CWP dimension, the frequency dispersion of permeability of Lorentz like magnetic response can be predicted. The simulated resonance frequency and permeability spectra can be explained well on the basis of the circuit theory of an RLC resonator.

면취기 시스템에 있어서 부하의 관성모멘트에 따른 가변 PID 일정 장력제어의 기초연구 (A Basic Study on the constant Tension control with variable PID as a function of inertia moment in the winding roll System)

  • 허진;전홍배;김철한;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.654-657
    • /
    • 2000
  • In the winding system, the constant tension control is too important. In this study, we've used a variable PID system as a function of a radius of winding roll. As a result, it was possible to measure a winding roll radius in the real time by making a mathematical model for measuring a winding roll radius. Finally, we've compared PID parameters as a function of winding roll radius after getting PID parameters in terms of the Ziegler & Nichols(ZN) method.

  • PDF

AFLC를 이용한 IPMSM 드라이브의 NN 파라미터 추정 (Neural Network Parameter Estimation of IPMSM Drive using AFLC)

  • 고재섭;최정식;정동화
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.293-300
    • /
    • 2011
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance and adaptive fuzzy learning contrroller(AFLC) for speed control in IPMSM Drives. AFLC is chaged fuzzy rule base by rule base modifier for robust control of IPMSM. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator and AFLC is confirmed by comparing to conventional algorithm.

전압방정식에서 시변성이 고려된 파라미터에 의한 토크 리플 산정 (The Estimation of Torque Ripple According to Parameters Considered Time-varying in Voltage Equation)

  • 김규화;조규원;김규탁
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1047-1052
    • /
    • 2017
  • In this paper, the calculation torque using the d-q axis has advantage like faster execution time. However, the torque ripple can't be considered in the torque calculation using d-q axis equivalent circuit because the time-dependent component is removed. When d-q transformation was performed, it was founded that some parameters has some characteristics. These characteristics were considered for representing torque ripple. The calculation with d-q axis transformation and Finite Element Analysis(FEA) were performed, and the results were compared. As a result, it was validated that the calculated torque can be expressed with ripple.

Magnetic Saturation Effect on the Rotor Core of Synchronous Reluctance Motor

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.634-639
    • /
    • 2011
  • This paper presents a study on the design parameters that consider the magnetic saturation effect in a rotor core of a synchronous reluctance motor. Two important design parameters in a rotor are selected to analyze the saturation effect of a synchronous reluctance motor, particularly in a rotor core. The thickness of the main segment, which is the main path of the d-axis flux, and the end rip, which affects the q-axis flux, are analyzed using the d-axis and q-axis inductances. Moreover, the characteristics of torque and torque ripple when magnetic saturation takes place are analyzed. The saturation effect is verified by comparing the reluctance torque between the experiment and FEM simulation.

Analytical Prediction for Electromagnetic Characteristics of Tubular Linear Actuator with Halbach Array Using Transfer Relations

  • Jang, Seok-Myeong;Choi, Jang-Young
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.221-230
    • /
    • 2007
  • This paper deals with analytical prediction for electromagnetic characteristics of a tubular linear actuator with Halbach array using transfer relations, namely, Melcher's methodology. Using transfer relations derived in terms of magnetic vector potential and a two-dimensional (2-d) cylindrical coordinate system, this paper derives analytical solutions for magnetic vector potential due to permanent magnets (PMs) and stator winding currents. On the basis of these analytical solutions, this paper also achieves analytical solutions for the magnetic fields distribution produced by PMs, stator windings current and axial thrust. The analytical results are validated extensively by finite element (FE) analyses. In particular, test results such as thrust measurements are given to confirm the analysis. Finally, this paper estimates control parameters using analytical solutions and test results such as thrust, back-emf, inductance and resistance measurements.