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Analytical Prediction for Electromagnetic Characteristics of Tubular
Linear Actuator with Halbach Array Using Transfer Relations

Seok-Myeong Jang* and Jang-Young Choi'

Abstract — This paper deals with analytical prediction for electromagnetic characteristics of a tubular
linear actuator with Halbach array using transfer relations, namely, Melcher’s methodology. Using
transfer relations derived in terms of magnetic vector potential and a two-dimensional (2-d) cylindrical
coordinate system, this paper derives analytical solutions for magnetic vector potential due to
permanent magnets (PMs) and stator winding currents. On the basis of these analytical solutions, this
paper also achieves analytical solutions for the magnetic fields distribution produced by PMs, stator
windings current and axial thrust. The analytical results are validated extensively by finite element
(FE) analyses. In particular, test results such as thrust measurements are given to confirm the analysis.
Finally, this paper estimates control parameters using analytical solutions and test results such as thrust,

back-emf, inductance and resistance measurements.
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1. Introduction

Linear motion machines are being employed
increasingly in applications ranging from transportation,
manufacturing, and office automation to material
processing, health care, and generation systems. Particular
examples include stirling cycle cryogenic coolers,
generators and artificial heart devices. The advantages of
such a motor is good linearity and it does not require
mechanical energy conversion parts that change rotary

motion into linear motion, such as screws, gears and chains.

It is notable that the absence of these mechanical
counterparts results in a higher dynamic performance,
improved reliability and reduced power loss due to
mechanical friction [2-3]. In addition, tubular linear
machines are very attractive compared to flat linear
machines because they produce high thrust due to the high
PM’s coefficient of utilization and don’t have end turn
effects. Because of these advantages, tubular linear PM
machines become an attractive candidate for many industry
applications, in spite of such disadvantages as difficulty in
manufacturing a permanent magnet mover, maintaining
fixed air-gap length and laminating for reducing eddy
current loss.

Wang {2] presented analytical solutions for open-circuit
field, armature reaction field distribution of tubular linear
machines with radially, axially and Halbach magnetized
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Fig. 1. Schematic of tubular linear actuator.

PMs by using magnetic vector potential, and predicted the
thrust by employing the Lorentz force equation, which is
very reliable but contains integrals of Bessel functions that
cause a significant analytical burden. Kim [4] also
performed analysis and design of the tubular linear motor
that has an air-cored and inner 3-phase stator winding and
the outer Halbach array mover without back iron, by using
Melcher’s methodology, namely, transfer relations. In
particular, he employed the Maxwell stress tensor applied
to planar motor given in [5] for the prediction of thrust.
Although the Maxwell stress tensor applied to planar motor
is employed in tubular geometry, this method is reasonable
and is free from integrals of the Bessel functions. Moreover,
the analytical techniques, namely, transfer relations
presented in [4] can be easily adapted to the tubular linear
actuator shown in Fig. | that has an iron-cored and outer
single-phase stator winding and the inner Halbach array
mover with back iron, by changing boundary conditions
properly and by performing a current density modeling of
the single-phase winding.

Therefore, this paper derives the generalized vector
potentials due to the PMs and single-phase winding
currents using the transfer relations. And then, analytical
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solutions for magnetic field distributions due to PMs and
stator winding currents and the thrust of the tubular linear
actuator are obtained from those. Analytical results
compare well with corresponding FE predictions. In
particular, test results such as thrust measurements
according to position of the mover are given to confirm the
analysis. Finally, on the basis of 2-d analytical solutions
and test results, control parameters of the tubular linear
actuator are estimated.
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Fig. 2. Typical arrangements of PMs in a tubular linear
actuator: (a) Halbach, (b) axial and (c) radial
magnetization,

2. Structures of tubular linear actuator

Fig. 1 shows the structure of the tubular linear actuator,
which consists of the PMs as a mover, a coil-wrapped
hollow bobbin and iron core as a pathway for magnet flux.
As will be discussed in following sections, we choose
"Halbach array as the mover and slotless structure as a stator.

2.1 PM array as a mover

Fig. 2 (a), (b) and (c) show the Halbach magnetized,
axially magnetized and radially magnetized mover for the
tubular linear actuator, respectively. In particular, the
Halbach magnetized mover has inherent self shielding
property, and thereby does not require a back iron. The
axially magnetized mover likewise does not need one for
the magnetic path, while the radially magnetized mover
comprises array surface-mounted PM blocks on an iron
backing. Moreover, the fundamental field of the Halbach
array is stronger by 1.4 than that of a conventional array,
and thus the power efficiency of the motor with Halbach
array i1s doubled. The magnetic field of the Halbach array is
more purely sinusoidal than that of the others, resulting in a
simple control structure [6]. These advantages are what
made us choose the Halbach array as the mover of the
tubular linear actuator,

2.2 The type of stator structures

Stator structures of electric machines are widely
classified into two types; one is slotted stator, the other is

slotless stator. The former usually has a higher force
density, but may also produce an undesirable destabilizing
tooth ripple cogging force and have the highest eddy
current loss in the magnets and the iron, in particular when
operating at high speed. On the other hand, the latter
eliminates the tooth ripple cogging effect, and thereby
improves the dynamic performance at the expense of a
reduction in specific force capability [2]. Therefore, this
paper chooses slotless structure as the stator of the tubular
linear actuator. Although this design choice sacrifices the
higher force capabilities that would be possible with iron
slots in the stator in favor of smooth actuation, with the
advent of the modern high-energy rare-ecarth PMs and
employment of the Halbach array, slotless motor topologies
have become interesting solutions [7].

3. Analytical model and transfer relations
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Fig. 3. The simplified analytical model.

Fig. 3 shows the simplified analytical model of the
tubular linear actuator shown in Fig. 1. As indicated in Fig.
3, the PM regions carry a primed coordinate frame that is
displaced from the base coordinate frame by a vector —zi,.
Here z, is the lateral displacement of the PMs relative to
the stator. Letters (a)-(h) represent the surfaces at the
indicated boundaries and Greek letters 3-8 denote the inner
and outer radii of the PMs and the stator. In order to obtain
the field solutions, this paper assumes that the permeability
of the stator core and the mover shaft is infinite. The
relative recoil permeability of winding and PM regions are
also assumed to be unified. On the other hand, the Fourier
series expansion for the magnetization of the Halbach array
is represented as

M= i [G(V)Mmir’ + Al:':niz']e_jknzI (1)

H=—©

where the pole pitch of the actuator is 7, and the spatial
wave-number of the nth harmonic is &, = na/r. G(r) makes
radial components of the Halbach magnetization function
for both radial and axial coordinates without decrease of
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accuracy for magnetization quantity and is given by [8]

2

¢ ¥
G(r)=—+c,r, ¢ = and ¢, =
r y+8 y+8
The complex Fourier coefficients of nth-order radial and
axial magnetization components, namely, M,, and M, are
given by

Mm - Brem {ejmra/Z Qe—jmm/Z}
Jnmu,
B —jnr inmo jnm —jnra
M, =—"— {(e / —l)e’ /2+(ej ~1)e / /2} 3)
J2nmu,

where B,., and y, denote the remanence of PMs and the
permeability of the air, respectively. a = 1,/t; Ty, is the PM
width. In a similar manner, the Fourier series expansion for
current density of slotless stator windings is expressed as

J= H(r)J,e™ i, )

where J, is the nth-order complex Fourier coefficient for
current density and is given by

J o= 2J0 {efjmr/Z _e—j3mt/2} (5)
n i
jnrw

where the amplitude of current density J; is given by

Ni

o ©®
o(8-9)

where N and i, are the turns per pole and winding current,

respectively. H(r) is also given by

c
H(r)=—9—+c4r, ¢y = and ¢, =

r g+

Next, the transfer relations which relate the fields
evaluated at the surfaces identified in the model of Fig. 3

are [4]
8] kz[Fo(&y) GO(M)} 4,
g | LG (5r) FR(re)|a ®)

Gy (8:7)+F, (7.6)
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Fig. 4. Model for the generalization of vector potentials
due to PMs.
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Fig. 5. Electromagnetic dual of cylindrical Halbach array:
(a) Halbach magnet array and (b) equivalent
current model.
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The geometric parameters Fy(x,y) and G(x,y) are [4]
1 (k,x) K, (k) + K, (k,x)1, (k,7)

F , - — n n n ll

O e & () K, ()1 ()]
and

1

Gy(x, ) =~ (12)

k:x{ll (kny)Kl (knx)_Kl (kny)ll (kn’x)}

where I; and K; are modified Bessel functions of the first
and second kind, of order one whiles /, and K, are also
modified Bessel functions of the first and second kind, of
order zero. Equations (8), (9) and (10) describe the transfer
relations in the PM, air-gap and stator winding regions,
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respectively. It is noted that the axial magnetization of the
Halbach array, namely, M., which does not appear in (8)
will be considered in boundary conditions. It is also noted
that the source terms of (8) and (10) presented in this paper
are different from those of (7) and (9) presented in [4]
because the function G(r) and H(r) introduced by this paper
are 1 at lower and upper boundaries of regions containing
source terms.

4. Fields due to PMs
4.1 Boundary conditions

By assumption that the relative recoil permeability of the
winding regions is unity, winding regions is contained in
air-gap regions, as shown in Fig. 4, for the case when the
magnetic field distributions due to PMs are analyzed. On
the other hand, Halbach magnet array shown in Fig. 5(a)
can be expressed as equivalent current model by applying
Ampere’s law to it, as shown in Fig. 5(b). Since the
equivalent current for axial components of the Halbach
magnetization exists at lower and upper surface of the PMs,
it must be considered in boundary conditions. As a
consequence, boundary conditions used in prediction of the
magnetic field distributions due to PMs are as follows:

i) B2 =0 and B" =0 by assumptions that the

permeability of the stator core and rotor shaft is
infinite,

iy B, -B/ =uM, and
because the equivalent current of axial

magnetization for Halbach array is existed at upper
and lower surface of PMs,

i) 45 =4/ and 4% =4

On on On On
potentials at all boundaries.

Bfn —Bz;; = _lUOM

zn

by continuity of vector

4.2 Vector potentials

By boundary conditions ii) and iii) presented in section
4.1, (8) can be rewritten by

an :_k2[ﬁ)(5’}/) GO(}/’é‘)il AHn +|iNl} (13)

vl LG (8 y) B(ne) ] 4 | LV

n

As shown in Fig. 4, since the air-gap regions contain the
winding regions, the transfer relations of air-gap regions
shown in Fig. 4 are given by

b
B:n __kll:E)(y’ﬂ) GO('B’y)j} AZ" (14)
B | LGB F(B)] 4,
By substituting boundary condition B_fn =0 for(14)
G, (5, .
A(Zn == ° (ﬂ }/) Aﬁn (15)
£y (7.8)
By substituting (15) for (14)
B, = R4y, (16)

By substituting boundary condition B! =0 for (13)

P 1

N7 e
Aon = ——;_Go (5’7)’49»; (17)
F(7.8) Lk

By substituting (16) and (17) for (13), we can obtain the
magnetic vector potential at the boundary surface (e),
namely, 4%, as following:

Ny (7.8) = N,G, (7,9) (18)
RE(7.0)+k {F,(8.7) Fy(7.6) -Gy (6,%) G, (7.6)}

A;VI =
where the coefficients P;, N, and N, are will be given in
Appendix.

4.3 The generalization of vector potentials
In order to generalize the magnetic vector potentials due

to PMs in the air-gap regions of Fig. 4, the transfer
relations for the air-gap regions of Fig. 4 can be written by

N o=

(19)

[y

kz':Fo(7’R) GD(R,V)} A,
L6, (R F (R )| 4

)

where R represents an imaginary boundary with the range
of y<R<P, as shown in Fig. 4. Using (16) and (19), the
magnetic vector potential due to PMs at the imaginary
boundary is given by

, -1 P, X
A::}M) = { 1 +E)(R’}/)} A;n (20)

G,(nR) K

On the other hand, radial and axial component of
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magnetic field distributions due to PMs are given by a
definition of magnetic vector potential B=VxA as

followings:
v ik R
B:’lPM) - jk :"(w) _ JK, {_12_'_[;('7 (R’}/)} A;” (2l.a)
G,(7.R) |k,
) R(PM
B:(PM) i A:,,lPM N aA::PM) _ Ag,,( ) N
z r' arv R

PAXRK, (ky)-1 (ky)Y(R)} -

k|, {F(R,y)g(R,y)—f(R,y)G(R,y)} 4,

g(Ry)

(21.b)

where the coefficients F(R,y), ARY), G(R,y), g(R.y), X(R)
and Y(R) will also given in Appendix.
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Fig. 6. Model for the generalization of vector potentials
due to stator currents.

5. Fields due to stator currents
5.1 Boundary conditions

In case of prediction of magnetic fields due to stator
currents, the PM regions are contained in air-gap regions
by assumption that the relative recoil permeability for
those is unity, as shown in Fig. 6. On the other hand,
boundary conditions used in prediction of the magnetic
field distributions due to stator currents are as followings:

I) B, =0 and B =0 by assumptions that the

permeability of the stator core and rotor shaft is
infinite,

) B -B. =0 and B —B’ =0 because there is

no surface current at upper and lower surface of
winding regions,

) 4, =4, and A, =A; by continuity of vector

potentials at all boundaries.

5.2 Vector potentials

By boundary conditions 1) and III) presented in section
5.1, (10) can be rewritten by

kz[Fo(w) Go(w)} A {Jl} 22

- LG(88) R84 | L

8w

U

zn

Where

l:Jl } o [FO (9.8)+G, (/)’,3)}

JZ GO(Lg’ﬂ)+FO(ﬂ’19)

As shown in Fig. 6, since the air-gap regions contain the
PM regions, the transfer relations of air-gap regions shown
in Fig. 6 are given by

e e [
B? "G, (6.8) F(9.9) A
By substituting boundary condition B =0 for (23)
45,=-(G,(5,9)/ F, (9,6)) 4, (24)
By substituting (24) for (23)
B, = P4, (25)
By substituting boundary condition BZ, =0 for(22)
4 = m{f—— G,(B.9) A:n} (26)

By substituting (25) and (26) for (22), the magnetic
vector potential at boundary surface (d), namely, 4%, is
given by

o _~Go(9.8)J,+1,F,(3.8) @7)
" R($H){R+A)

where the coefficients £, and P; are given by

P, =k, {FO (6,9)- G,(.5)G, (5"9)} (28.2)
7, (5.9)
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G,(3,8)G,(B.9)

P =k, F(8.9)- r(9.5)

(28.b)

5.3 The generalization of vector potentials

In order to generalize the magnetic vector potentials due
to stator currents in the air-gap regions of Fig. 6, the
transfer relations for the air-gap regions are given by

le :—k’f Fz)(RC’lg) GO(lg’RC) Agn (29)
B Gy(R..8) Fy(9.R,) )| 4%

where R, represents an imaginary boundary with the range
of 6<R. <9 . Using (25) and (29), the magnetic vector
potential at the imaginary boundary is given by

R, (coil) _ -1 P2

o = —=+F(R.9)r4, (30
G,(%R,) |k ( ) )

As a consequence, radial and axial component of flux
density due to stator currents are given by

— 7 P
__L{;;%—'_E)(Rc’g)}AZn (3l.a)

BRC(cuil) :_]k Akc(cuil) -
Gy(9R;)

m n"on

R (coil) Re{coil) R {coil)
BRc(CUi/ ) Ag;(“" + aAH: “ AH; “

i r or R,
P{X(RK, (k,9)-1,(ky)Y(R.)} -
k9| [F(R.9)g(R.9)~1(R.9G(R.9) 4,

g(Rr." l9)2

+

(31.b)

where the coefficients F(R., ¢ ), AR, 9 ), G(R. 9 ),
g(R, 3), X(R.) and Y(R.) will also given in Appendix.

Fig. 7. Magnetic flux distributions due to (a) PMs and (b)
stator currents obtained by FE analyses.
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Fig. 8. Comparison of between analytical and FE results
for (a) radial and (b) axial flux density due to PMs.
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Fig. 9. Comparison of between analytical and FE resulits
for (a) radial and (b) axial flux density due to stator
currents.
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Fig. 11. Photograph for concept of back-emf measurements.

Table 1. Estimated Control Parameters of tubular linear actuator.

Analytical FEA Experimental

Thrust constant K1 [N/A] 48 48 48
Back-emf constant Kg [V-s/m] 48 48 46
Inductance L [mH] - 3.25 2.8
Resistance R [€2] 6 6 6.1

6. Comparison of predictions with FE calculations

This chapter describes the comparison of predictions
with FE calculations for flux density due to PMs and stator
currents. A commercial package ANSOFT MAXWELL is
employed for FE analyses. Fig. 7 shows the magnetic flux
lines due to PMs and stator currents. Fig. 8 and 9 shows the
comparison of between analytical and FE results for radial
and axial flux density due to PMs and stator currents,
respectively. All analytical results are in good agreement
with those obtained from FE analyses. It can be observed
from Fig. 8(a) and Fig. 9(a) that radial flux density due to
PMs and stator currents is the most sinusoidal at the
boundary surface (b) and (g), respectively.

7. Control Parameters

Fig. 10 shows the testing apparatus for measurements of

thrust. As shown in Fig. 11, given that we manufactured -

two sets of tubular linear actuators, the back-emf is
measured by the driving actuator as a generator at a given
speed that depends on the speed of the other actuator

driven as a motor [9]. Table 1 shows the control parameters
of the tubular linear actuator obtained from the analytical,
FE and experimental method. The analytical results are
shown to be in good agreement with those obtained from
measurements and FE analyses.

7.1 Thrust and back-emf constant

The thrust acting on the windings by interaction between
the PMs and the winding currents is derived via the
Maxwell stress tensor. If the radii of the magnet and
current regions are large compared with their thickness,
thrust equations for planar linear motors given in [5] can be
employed for the prediction of thrust for tubular linear
motor [4]. As presented in [5], the stress tensor T} for
magnetically linear materials associated with the
Korteweg-Helmholtz force density is

T;=pHH, -8;uH H, /2 (32)

where the Kronecker delta dy is when i # j, and is 1 when i
= j. By the Einstein summation convention and assumption
that a volume of the winding on which the thrust acts
encloses an integer number of periods?, the thrust acting on
the enclosed section of the winding is given by

Fz :—S<Té >z=_S:u() <HIeH§ >z

=S, S HE (mg)

n=-m

(33)

where the upper surface (boundary e) area of the PMs that
encloses an integer number of periods is S = 2ptw, p is the
pole-pairs of the mover and w is given by 2ny. H,* and A,
are radial and axial fields due to both the PMs and the
winding currents at boundary surface (), respectively and
can be obtained by the sum of (21.a) and (31.a) and by the
sum of (21.b) and (31.b), respectively. The superscripts *
denotes complex conjugate. On the other hand, the thrust
constant (K7) can be calculated from (33) as following;:

F =K, (34)

z T

where i is the phase current. The back-emf constant (Kr)
can be calculated by

PM - PM PM
o A2 2 A

(33)
dt dt dz, dz, £

where A™ represent a linkage flux passing the windings
due to PMs and can be obtained by line integral of (20).
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However, since (20) contains the Bessel functions, its
integral causes analytical burden. However, generally,
since the thrust constant is identical with the back-emf
constant for the case when stator of the actuator has single-
phase windings, we can predict back-emf constant from
thrust constant calculated by the force equation of planar
motor analytically. Fig. 12 (a) and (b) shows the
comparison among analytical, FE and experimental results
for the axial thrust according to mover position and the
maximum value of back-emf according to mover velocity.
The analytical results are shown to be in good agreement
with those obtained from FE analyses and measurements. It
can be predicted from Fig. 12(a) and (b) that both thrust
constant and back emf constant are 48 approximately. It is
noted that the analytical results shown in Fig. 12(b) is
obtained from assumptions that the thrust constant is
identical with the back-emf constant for the case when
stator of the actuator has single-phase windings.

100

FEA Measurements
1A —B— [}

‘T'hrust (N}

Analytical

-100
0 T, . 21
Mover Position [mm]
(@
10
3 8 k0
o 8 IS
=
o
=
Q
& —— Analytical
= 6 O FEA
& ® Experimental
------- y=46x-0.3
4
0.12 0.14 0.16 0.18 0.20
Velocity [m/s]
(b)

Fig. 12. Comparison among analytical, FE and experi-
mental results for (a) the axial thrust according to
mover position and (b) the back-emf according to
mover velocity.

7.2 Resistance and Inductance
Since it can be assumed that the AC coil resistance of the

windings is the same as the DC coil resistance, for the case
when the actuator is driven at a low frequency, the resistance

of the tubular linear actuator is calculated by [10]

R =ipcd% (36)
72- c

where p,, d., N and [;. denote resistivity, radius, turns and
length of conductor, respectively. Fig. 13 shows the
comparison among analytical, FE and measurements for
the resistance. Since length of conductor /;, in (36) is
employed for depth of conductor model in ‘transient mode’
of the ANSOFT MAXWELL for FE analyses, analytical
results obtained from (36) are shown to be in excellent
agreement with FE results. On the other hand, the winding
self inductance (L) is calculated by

J .
A" =L €))

where ' represent a linkage flux passing the windings due
to stator currents and can be obtained by line integral of
magnetic vector potential due to stator currents in winding
regions. Although we do not calculate this analytically
because of analytical burden such as integrals of Bessel
functions, as shown in Fig. 14 and Table I, we can obtain
this using FE analyses and measurements. In particular,
PM6806 RCLmeter of the FLUKE is employed for
inductance measurements.
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Fig. 13. Comparison among analytical, FE and experi-
mental results for resistance.
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Fig. 14. FE results for inductance.
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8. Conclusions

Analytical prediction for electromagnetic characteristics
such as magnetic flux density due to PMs and thrust of
tubular linear actuator with Halbach array using transfer
relations has been described. The analytical results have
been validated extensively with FE results. On the basis of
2-d analytical solutions, this paper has predicted control
parameters such as thrust, back-emf constant and resistance
of tubular linear actuator. Test results such as thrust, back-
emf, inductance and resistance measurements are given to
confirm electromagnetic analysis and control parameters
estimated from analytical solutions. The predicted control
parameters are shown to be in good agreement with those
measured.

Appendix

o Derived Coefficients

N, =-p,[jkM {F(8,7)+G,(7.6)} - M,]
NZ = _/'lt) [janrn {GU (5’7)+F;1 (7’5)}—Mzn]

216 (B.7)G,(r.8)
E—kn{ o) Fo(ﬂ#)}

Aﬁn=-5iﬁfl+a(hr)
knr

Hn=—fiﬂﬁ~KAh0
knr

f(a,b) =
1, (ka) K, (kb)K, (kb)+1,(ka)K, (ka)K, (k,b)1, (k)
=1, (kna) K, (kna)Ko (knb) 1 (knb) -k, (kna)z 4 (knb)[o (knb)

g(a.b) =K, (ka)l (kb)-1 (ka)K (kb)

F(x,y)=2X(x), (k x)K, (k,y) K, (k,y)+

{XK, (kx)+ Y], (kX )HK, (k) (k,y) -1, (k,y) K, (k,»)}
“2Y(x)K, (kx) 1, (ky)I, (k)

G(x,y) =Y ()1, (k,y) - XK, (k)
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