• Title/Summary/Keyword: inducible NOS

Search Result 943, Processing Time 0.041 seconds

Inhibition of nitric oxide and TNF-$\alpha$ production by propenone compound through blockaded of NF-$\kappa$B activation in cultured murine macrophages

  • Ju, Hye-Kyung;Lee, Eun-Kyung;Jahng, Yurng-Dong;Lee, Eung-Seok;Chang, Hyeun-Wook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.156.2-157
    • /
    • 2003
  • Lipopolysaccharide (LPS)-stimulated macrophages produced a large amounts of nitric oxide (NO) by inducible nitric oxide synthase (iNOS). This is an important mechanism in macrophages-induced septic shock and inflammation. In the present study, we tested a synthetic propenone compound, l-furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) for its ability to inhibit the production of tumor necrosis factor-a (TNF-$\alpha$) and an inducible enzyme, iNOS, in the LPS-stimulated murine macrophage-like cell line, Raw264.7. FPP-3 consistently inhibited nitric oxide (NO) and TNF-$\alpha$ production in a dose dependent manner, with $IC_50$> values of 10.0 and 13.1 $\mu$M, respectively. (omitted)

  • PDF

Inhibition of Inducible Nitric Oxide Synthase by Agaricus bisporus Extract in RAW 264.7 Macrophages

  • Ahn, Ji-Yun;Lee, Hyun-Jung;Moon, Mi-Kyung;Kim, Su-Na;Ha, Tae-Youl
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.362-365
    • /
    • 2008
  • Agaricus bisporus, also known as white button mushroom, is one of the most popular mushrooms consumed in Korea. This mushroom contains high concentrations of flavanoids and exhibits antioxidant activity. In this study, we examined the effects of Agaricus bisporus ethanol extract (ABE) on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells. Nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) protein levels were assessed in cells treated with $100\;{\mu}M$ LPS in the presence or absence of ABE. 0.5 mg/mL of ABE suppressed NO production significantly. Moreover, ABE inhibited levels of iNOS protein. Taken together, these results suggest that ABE exerts anti-inflammatory activity in LPS-induced inflammation in RAW 264.7 cells.

The Anti-inflammatory Mechanism of Pu-erh Tea via Suppression the Activation of NF-κB/HIF-1α in LPS-stimulated RAW264.7 Cells

  • Su-Jin Kim
    • Biomedical Science Letters
    • /
    • v.29 no.2
    • /
    • pp.58-65
    • /
    • 2023
  • Pu-erh tea, a popular and traditional Chinese tea, possesses various health-promoting effects, including inhibiting tumor cell progression and preventing type II diabetes and neurodegenerative disorders. However, the precise anti-inflammatory mechanisms are not well understood. In present study, we elucidated the anti-inflammatory mechanism of Pu-erh tea in lipopolysaccharide (LPS)-activated RAW264.7 cells. We explored the effects of Pu-erh tea on the levels of inflammatory-related genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) in LPS-activated RAW264.7 cells. Moreover, we investigated its regulatory effects on nuclear factor-kappa B (NF)-κB and hypoxia-inducible-factor (HIF)-1α activation. The findings of this study demonstrated that Pu-erh tea inhibited the LPS-increased inflammatory cytokines and PGE2 release, as well as COX-2 and iNOS expression. Moreover, we confirmed that the anti-inflammatory mechanism of Pu-erh tea occurs via the inhibition of NF-κB and HIF-1α activation. Conclusively, these findings provide experimental evidence that Pu-erh tea may be useful candidate in the treatment of inflammatory-related diseases.

Parthenolide Suppresses the Expression of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Induced by Toll-Like Receptor 2 and 4 Agonists

  • Lee, A-Neum;Park, Se-Jeong;Yun, Sae-Mi;Lee, Mi-Young;Son, Bu-Soon;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • Toll-like receptors (TLRs), which are pattern recognition receptors (PRRs), recognize pathogen-associated molecular patterns (PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$, leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Parthenolide, a sesquiterpene lactone isolated from the herb feverfew (Tanacetum parthenium), has been used as folk remedies to treat many chronic diseases for many years. In the present report, we present biochemical evidence that parthenolide inhibits the NF-${\kappa}B$ activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, $IKK{\beta}$, and p65. Parthenolide also inhibits TLR agonists-induced COX-2 and iNOS expression. These results suggest that parthenolide can modulate the immune responses regulated by TLR signaling pathways.

Inhibition of Nitric Oxide Production from lipopolysaccharide-Treated RAW 264.7 Cells by Synthetic Flavones:Structure-Activity Relationship and Action Mechanism

  • Kim, Soo-Jin;Park, Hae-Il;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.937-943
    • /
    • 2004
  • Recent investigations have shown that certain flavonoids, especially flavone derivatives, inhibit nitric oxide (NO) production by inducible NO synthase (iNOS) in macrophages, which contrib-ute their anti-inflammatory action. For the purpose of finding the optimized chemical structures of flavonoids that inhibit NO production, various A- and B-ring substituted flavones were syn-thesized and evaluated for their inhibitory activity using lipopolysaccharide-treated RAW 264.7 cells. It was found that the optimal chemical structures were A-ring 5,7-dihydroxyflavones hav-ing the B-ring 2',3'-dihydroxy or 3',4'-dihydroxy or 3',4'-hydroxy/methoxy (methoxy/hydroxy) groups. These structurally optimized compounds were revealed to be down-regulators of iNOS induction, but not direct iNOS inhibitors. Of these derivatives that were evaluated, 2',3',5,7-tet-rahydroxyflavone and 3',4',5,7-tetrahydroxyflavone (Iuteolin) showed the strongest inhibition. The $IC_{50}$/ values for these compounds were 19.7 and 17.1 11M, respectively. Therefore, these compounds may have a potential as new anti-inflammatory agents.

Effect of Rhei Rhizoma on Brain Edema Induced by MCAO in Rats (대황(大黃)이 뇌허혈 손상에 의한 뇌부종에 미치는 영향)

  • Kang, Kyung-Hwa;Sohn, Nak-Won;Kim, Bum-Hoi
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.866-871
    • /
    • 2009
  • Brain edema is a major importance in the pathophysiology of CNS injuries including stroke. Ischemic brain edema results from both cytotoxic edema, which is severe in astrocytes at early stage, and vasogenic edema caused by excessive blood-brain barrier (BBB) permeability. The present study was performed to determine the effect of Rhei Rhizoma on brain edema induced by middle cerebral artery occlusion (MCAO) in the rats. The neurological symptom, total infarct volume and edema index caused by MCAO were measured. The changes of Matrix Metalloproteinase-9 (MMP-9) and inducible nitric oxide synthase (iNOS) immunoreactivities were also observed. We found that Rhei Rhizoma extract improved the neurological symptom and attenuated the total infarct volume and brain edema caused by ischemic insult. Rhei Rhizoma extract also attenuated the expression of MMP-9 and iNOS. This results suggest that Rhei Rhizoma has a protective effect on the brain edema caused by ischemic insult.

Lipopolysaccharide Inhibits Proliferation of the Cultured Vascular Smooth Muscle Cells by Stimulating Inducible Nitric Oxide Synthase and Subsequent Activation of Guanylate Cyclase

  • Choi, Hyoung-Chul;Lee, Sang-Gon;Kim, Jong-Ho;Kim, Joo-Young;Sohn, Uy-Dong;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.4
    • /
    • pp.343-351
    • /
    • 2001
  • This study was undertaken to investigate the mechanism of lipopolysaccharide (LPS) and nitric oxide (NO) as a regulator of vascular smooth muscle cell (VSMC) proliferation. VSMC was primarily cultured from rat aorta and confirmed by the immunocytochemistry with anti-smooth muscle myosin antibody. The number of viable VSMCs were counted, and lactate dehydrogenase (LDH) activity was measured to assess the degree of cell death. Concentrations of nitrite in the culture medium were measured as an indicator of NO production. LPS was introduced into the medium to induce the inducible nitric oxide synthase (iNOS) in VSMC, and Western blot for iNOS protein and RT-PCR for iNOS mRNA were performed to confirm the presence of iNOS. Inhibitors of iNOS and soluble guanylate cyclase (sGC), sodium nitroprusside (SNP) and L-arginine were employed to observe the action of LPS on the iNOS-NO-cGMP signalling pathway. LPS and SNP decreased number of VSMCs and increased the nitrite concentration in the culture medium, but there was no significant change in LDH activity. A cell permeable cGMP derivative, 8-Bromo-cGMP, decreased the number of VSMCs with no significant change in LDH activity. L-arginine, an NO substrate, alone tended to reduce cell count without affecting nitrite concentration or LDH level. Aminoguanidine, an iNOS specific inhibitor, inhibited LPS-induced reduction of cell numbers and reduced the nitrite concentration in the culture medium. LY 83583, a guanylate cyclase inhibitor, suppressed the inhibitory actions of LPS and SNP on VSMC proliferation. LPS increased amounts of iNOS protein and iNOS mRNA in a concentration-dependent manner. These results suggest that LPS inhibits the VSMC proliferation via production of NO by inducing iNOS gene expression. The cGMP which is produced by subsequent activation of guanylate cyclase would be a major mediator in the inhibitory action of iNOS-NO signalling on VSMC proliferation.

  • PDF

Cedrela sinensis Leaves Suppress Oxidative Stress and Expressions of iNOS and COX-2 via MAPK Signaling Pathways in RAW 264.7 Cells

  • Bak, Min-Ji;Jeong, Jae-Han;Kang, Hye-Sook;Jin, Kyong-Suk;Ok, Seon;Jeong, Woo-Sik
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Overproduction of reactive oxygen species (ROS), including nitric oxide (NO), could be associated with the pathogenesis of various diseases such as cancer and chronic inflammation. Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are known to play key roles in the development of these diseases. Cedrela sinensis leaves have been used in Asian countries as a traditional remedy for enteritis, dysentery and itching. In the present study, we investigated the anti-inflammatory effects of Cedrela sinensis leaves in lipopolysaccharide (LPS)- stimulated RAW 264.7 macrophages. Powder of C. sinensis leaves was extracted with 95% ethanol and fractionated with a series of organic solvents including n-hexane, dichloromethane, ethyl acetate, n-butanol, and water. The dichloromethane (DCM) fraction strongly inhibited NO production possibly by down-regulating iNOS and COX-2 expression, as determined by Western blotting. Hydrogen peroxide-induced generation of reactive oxygen species (ROS) was also effectively inhibited by the DCM fraction from C. sinensis leaves. In addition, C. sinensis inhibited LPS-mediated p65 activation via the prevention of IκB-$\alpha$ phosphorylation. Furthermore, mitogen-activated protein kinases (MAPKs) such as ERK 1/2 and p38 were found to affect the expression of iNOS and COX-2 in the cells. Taken together, our data suggest that leaves of C. sinensis could be used as a potential source for anti-inflammatory agents.

Immunohistochemical localization of protein kinase C and nitric oxide synthase in the vomeronasal organ of the horse (말 서골코기관에서 protein kinase C 및 nitric oxide synthase의 면역조직학적 관찰)

  • Lee, Kwanghyup;Ahn, Meejung;Lee, Yongduk;Ha, Theyoung;Kim, Heeseok;Shin, Thekyun
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.3
    • /
    • pp.269-273
    • /
    • 2001
  • The expression of protein kinase C(PKC) isoforms and nitric oxide synthase (NOs) isoforms was studied in the equine vomeronasal organ(VNO), a pheromone receptor organ, using immunohistochemistry. All PKC isoforms including PKC $\alpha$, ${\beta}I$, $\delta$, and $\theta$ were detected in the supporting cells, sensory receptor cells, and basal sensory epithelial cells, while constitutive PKC $\alpha$ and ${\beta}I$ were stained more intensely than novel PKC $\delta$ and ${\theta}$. There was also a varying degree of immunostaining for PKCs in the glandular acini and VNO nerve. Constitutive neuronal and endothelial NOSs, and inducible NOS were detected in the VNO sensory epithelia. There was intense immunoreactivity for endothelial NOS in the VNO sensory epithelia but weak reactivity for neuronal NOS, while inducible NOS showed little immunoreactivity in the adjacent section. These findings suggest that both PKCs and NOSs may be involved in the process of pheromone reception in the horse. Constitutive isoforms of these enzymes may play a more important role in signal trasduction in the VNO of the horse.

  • PDF