• Title/Summary/Keyword: induced polarization

Search Result 300, Processing Time 0.029 seconds

Hydrogen Production by the High Temperature Steam Electrolysis of NiO/YSZ/Pt Cell (NiO/YSZ/Pt 전해셀의 고온 수증기 전해에 의한 수소제조 특성)

  • Yu, Ji-Haeng;Kim, Young-Woon;Lee, Shi-Woo;Seo, Doo-Won;Hong, Ki-Suk;Han, In-Sub;Woo, Sang-Kuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2006
  • High temperature electrolysis is a promising technology to produce massively hydrogen using renewable and nuclear energy. Solid oxide fuel cell materials are candidates as the components of steam electrolysers. However, the polarization characteristics of the typical electrode materials during the electrolysis have not been intensively investigated. In this study, NiO electrode was deposited on YSZ electrolyte by spin coat process and firing at $1300^{\circ}C$. Pt electrode was applied on the other side of the electrolyte to compare the polarization characteristics with those by NiO during electrolysis. The $H_2$ evolution rate was also monitored by measuring the electromotive force of Lambda probe and calculated by thermodynamic consideration. At low current density, Pt showed lower cathodic polarization and thus higher current efficiency than Ni, but the oxidation of Ni into NiO caused the increase of anodic resistance with increasing current density. High overpotential induced high power consumption to produce hydrogen by electrolysis.

Polarimetry of (162173) Ryugu at the Bohyunsan Optical Astronomy Observatory using the 1.8-m Telescope with TRIPOL

  • Jin, Sunho;Ishiguro, Masateru;Kuroda, Daisuke;Geem, Jooyeon;Bach, Yoonsoo P.;Seo, Jinguk;Sasago, Hiroshi;Sato, Shuji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.45.2-46
    • /
    • 2021
  • The Hayabusa 2 mission target asteroid (162173) Ryugu is a near-Earth, carbonaceous (C-type) asteroid. Before the arrival, this asteroid is expected to be covered with mm- to cm- sized grains through the thermal infrared observations [1]. These grains are widely understood to be formed by past impacts with other celestial bodies and fractures induced by thermal fatigue [2]. However, the close-up images by the MASCOT lander showed lumpy boulders but no abundant fine grains [3]. Morota et al. suggested that there would be submillimeter particles on the top of these boulders but not resolved by Hayabusa 2's onboard instruments [4]. Hence, we conducted polarimetry of Ryugu to investigate microscopic grain sizes on its surface. Polarimetry is a powerful tool to estimate physical properties such as albedo and grain size. Especially, it is known that the maximum polarization degree (Pmax) and the geometric albedo (pV) show an empirical relationship depending on surface grain sizes [5]. We observed Ryugu from UT 2020 November 30 to December 10 at large phase angles (ranging from 78.5 to 89.7 degrees) to derive Pmax. We modified TRIPOL (Triple Range Imager and POLarimeter, [6]) to attach to the 1.8-m telescope at the Bohyunsan Optical Astronomy Observatory (BOAO). With this instrument, we observed the asteroid and determined linear polarization degrees at the Rc-band filter. We obtained sufficient data sets from 7 nights at this observatory to determine the Pmax value, and collaborated with other observatories in Japan (i.e., Hokkaido University, Higashi-Hiroshima, and Nishi-Harima) to acquire linear polarization degrees of the asteroid from total 24 nights observations with large phase angle coverage (From 28 to 104 degrees). The observational results have been published in Kuroda et al. (2021) [7]. We thus found the dominance of submillimeter particles on the surface of Ryugu from the comparison with other meteorite samples from the campaign observation. In this presentation, we report our activity to modify the TRIPOL for the 1.8-m telescope and the polarimetric performance. We also examine the rotational variability of the polarization degree using the TRIPOL data.

  • PDF

Galangin (3,5,7-Trihydroxyflavone) Shields Human Keratinocytes from Ultraviolet B-Induced Oxidative Stress

  • Madduma Hewage, Susara Ruwan Kumara;Piao, Mei Jing;Kim, Ki Cheon;Cha, Ji Won;Han, Xia;Choi, Yung Hyun;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.165-173
    • /
    • 2015
  • Most skin damage caused by ultraviolet B (UVB) radiation is owing to the generation of reactive oxygen species. Phytochemicals can act as antioxidants against UVB-induced oxidative stress. This study investigated the protective effects of the flavone galangin against UVB-induced oxidative damage in human keratinocytes. Galangin efficiently scavenged free radicals and reduced UVB-induced damage to cellular macromolecules, such as DNA, lipids, and proteins. Furthermore, galangin rescued cells undergoing apoptosis induced by UVB radiation via recovering mitochondrial polarization and down-regulating apoptotic proteins. These results showed that galangin protects human keratinocytes against UVB radiation-induced cellular damage and apoptosis via its antioxidant effects.

Field Induced Phase Transition in $0.6Pb(Ni_{1/3}Nb_{2/3})O_3-0.31PbTiO_3-0.09PbZrO_3$ Relaxor Ferroelectrics ($0.6Pb(Ni_{1/3}Nb_{2/3})O_3-0.31PbTiO_3-0.09PbZrO_3$ 완화형 강유전체의 전계 유기 상전이 현상)

  • 윤만순;장현명;정회승;최병철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.620-628
    • /
    • 1997
  • The possibility of the existence of a field-induced micro-macrodomain switching was proposed and examined using 9 mol % PbZrO3-doped 0.6Pb(Ni1/3Nb2/3)O3-PbTiO3 (PNN-PT) systems having rhombohedral symmetry at room temperature. the thermally depoled (freshly prepard) specimens prepared from the rhombohedral side of the system exhibited a relaxor behavior for the whole range of temperature examined (for T

  • PDF

Utilization of Induced Polarization and Electrical Resistivity for Identifying Rock Condition (유도분극 전하 충전성과 전기비저항을 활용한 암반 상태 파악 가능성 연구)

  • Park, Jinho;Ryu, Jinwoo;Jung, Jeehee;Lee, In-Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.493-502
    • /
    • 2016
  • This study examines how rock condition affects the variation of the chargeability and electrical resistivity of the rock. In the theoretical study, the relationship correlating chargeability with the variables affecting it is derived. A parametric study utilizing the derived relationship reveals that the size of narrow pores ($r_1$) is the most influential factor on chargeability, and the salinity of pore water ($C_0$) is the second. In the laboratory experiments, small scale rock fracturing zone is modelled using sand stone. Chargeability and resistivity are measured by changing the size of the joint aperture, the location of fractured zone and the existence of clay gouge and/or clay layer which shows lower chargeability than the sand stone layer in the multi-layered ground. Test results show that chargeability is controlled not by the rock fracturing condition but by the size of narrow pore ($r_1$) where each line of current flow passes through. Also, the chargeability decreases with increase of the pore water salinity ($C_0$). In conclusion, the ground condition can be identified more efficiently by measuring the induced polarization along with the electrical resistivity; identifying the existence of sea water, the layered ground and/or the fractured rock becomes more reliable.

Geophysical Logging of Frequency-domain Induced Polarization for Mineral Exploration (광물탐사를 위한 진동수영역 유도분극 물리검층)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.73-77
    • /
    • 2021
  • Induced polarization (IP) is useful for mineral exploration and hydrogeological studies by visualizing the electrochemical reactions at the interface between polarized minerals and groundwater. Frequency-domain IP (FDIP) is not actively applied to field surveys because it takes longer to acquire data, despite its higher data quality than conventional time-domain IP. However, data quality is more important in current mineral exploration as the targets gradually shift to deep or low-grade ore bodies. In addition, the measurement time reduced by automated instrumentation increases the potential for FDIP field applications. Therefore, we demonstrate that FDIP can detect mineral exploration targets by performing geophysical logging in the boreholes of a skarn deposit, in South Korea. Alternating current (AC) resistivity, percent frequency effect (PFE) and metal factor (MF) were calculated from impedance values obtained at two different frequencies. Skarn zones containing magnetite or pyrite showed relatively low AC resistivity, high PFE, and high MF compared to other zones. Therefore, FDIP surveys are considered to be useful for mineral exploration.

Periodic domain formation in $>LiNbO_3$ single crystals during growth

  • Park, Jong-Koen
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.23-26
    • /
    • 1998
  • The domain formation phenomena of {{{{ { LiLbO}_{ 3} }}}} crystals was investigated and the method for the periodic domain formation in {{{{ { LiLbO}_{ 3} }}}} single crystals during growth was proposed in this study. The strees-induced domain formation mechanism was proposed and explained. The strong piezoelectric effect of{{{{ { LiLbO}_{ 3} }}}} at elevated temperature would be the direct driving force for the inversion of the tensile component of the internal stresses can inverse the original direction of the spontaneous polarization.

  • PDF

A Study on High Voltage and High Current Measurement using Laser (레이저에 의한 고전압 및 대전류 측정에 관한 연구)

  • Gang, Hyeong-Bu;Jeong, Un-Gwan;Jang, Yong-Mu;Choe, Seung-Gil;Sim, Jae-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.769-770
    • /
    • 1988
  • The Pockel's effect is well know as a voltage measurement method. This method is applicable to high voltage measurement equipments. We observe the Faraday rotation of the polarization plane in the current-induced magnetic field.

  • PDF

Piezoelectric and Electric Field Induced Strain Properties of PMW-PNN-PZT Ceramics with the Substitution of Ba (Ba 치환에 따른 PMW-PNN-PZT 세라믹스의 압전 및 전계유기왜형 특성)

  • 윤광희;김규수;최병수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.20-25
    • /
    • 2001
  • To develop the piezoelectric actuator, the structural, dielectric and piezoelectric properties and electric fieldinduced strain of the ceramics(Pb$\_$1-2/Ba$\_$x/)[Mg$\_$1/2/W$\_$1/2/)$\_$0.03/-Ni$\_$1/3/Nb$\_$2/3/)$\_$0.12/-(Zr$\_$0.5/Ti$\_$0.5/)$\_$0.85/]O$_3$(x=0, 0.01, 0.03, 0.05, 0.07, 0.1) were investigated with the substitution of Ba. The tetragonality of crystal structure and grain size decreased by the substitution of Ba. Curie temperature decreased due to the decrease of the tetragonality, and dielectric constants increased with the substitution of Ba. The coercive field, remnant polarization and electromechanical coupling factor also decreased, whereas the piezoelectric constatns d$\_$33/ and d$\_$31/ were showed the highest value of 430 and 209(x10$\^$-12/C/N), respectively, because of the increase of dielectric constant. The strain induced by 60Hz AC electric field had the maximum value of 204x10$\^$-6/Δℓ/ℓ at the substitution of Ba 3mol%. As the applied electric field approaches to the coercive field, the piezoelectric element is depolarized and the electric field induced strain revealed non-linearity.

  • PDF