• Title/Summary/Keyword: induced drag

Search Result 166, Processing Time 0.029 seconds

A study of internal wave influence on OTEC systems

  • Shi, Shan;Kurup, Nishu V.;Halkyard, John;Jiang, Lei
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.309-325
    • /
    • 2013
  • Ocean Thermal Energy Conversion (OTEC) systems utilize the temperature difference between the surface water and deep ocean water to generate electrical energy. In addition to ocean surface waves, wind and current, in certain locations like the Andaman Sea, Sulu Sea and the South China Sea the presence of strong internal waves may become a concern in floating OTEC system design. The current paper focuses on studying the dependence of the CWP hydrodynamic drag on relative velocity of the flow around the pipe, the effect of drag amplification due to vortex induced vibrations and the influence of internal waves on the floating semi and the cold water pipe integrated OTEC system. Two CWP sizes are modeled; the 4m diameter pipe represents a small scale prototype and the 10m diameter pipe represents a full commercial size CWP. are considered in the study.

Aerodynamics and rain rivulet suppression of bridge cables with concave fillets

  • Burlina, Celeste;Georgakis, Christos T.;Larsen, Soren V.;Egger, Philipp
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.253-266
    • /
    • 2018
  • In this paper, the aerodynamic performance of two new cable surfaces with concave fillets (strakes) is examined and compared to plain, dimpled and helically filleted surfaces. To this end, an extensive wind-tunnel campaign was undertaken. Different samples with different concave fillet heights for both new surfaces were tested and compared to traditional surfaces in terms of aerodynamic forces (i.e. drag and lift reduction) and rain-rivulet suppression. Furthermore, flow visualization tests were performed to investigate the flow separation mechanism induced by the presence of the concave fillet and its relation to the aerodynamic forces. Both new cable surfaces outperformed the traditional surfaces in terms of rain-rivulet suppression thanks to the ability of the concave shape of the fillet to act as a ramp for the incoming rain-rivulet. Furthermore, both new surfaces with the lowest tested fillet height were found to have drag coefficients in the supercritical Reynolds range that compare favorably to existing cable surfaces, with an early suppression of vortex shedding.

A Study on the Levitation Mechanism Based on the Electrodynamic Force for a Maglev Planar Transportation System (동전기력에 기초한 자기 부상 평면 운송 시스템의 부상 메커니즘에 관한 연구)

  • Park, Joon-Hyuk;Baek, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1025-1033
    • /
    • 2006
  • This paper describes the levitation mechanism using magnetic wheel for a maglev planar transportation system. Rotation of the magnetic wheel where the permanent magnet array is embedded produces the time varying traveling magnetic flux density and the generated magnetic flux density creates the induced levitation force and drag force with the conductor. Because the net drag force is zero, magnetic wheel can only generate the levitation force. Thus, it always guarantees the stability in levitation direction and it does not disturb other directional motion. In this paper, levitation principle of the magnetic wheel is analyzed using distributed field approach and dynamic characteristics of the levitation in the magnetic wheel system are estimated. The feasibility of the proposed levitation mechanism is verified through the several experimental works.

Development of the Active Ankle Foot Orthosis to Induce the Normal Gait for the Paralysis Patients (마비 환자의 정상적 보행을 위한 능동형 단하지 보조기 개발)

  • Hwang, Sung-Jae;Kim, Jung-Yoon;Hwang, Seon-Hong;Park, Sun-Woo;Yi, Jin-Bock;Kim, Young-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2007
  • In this study, we developed an active ankle-foot orthosis(AAFO) which can control dorsi/ plantar flexion of the ankle joint to prevent foot drop and toe drag during walking. 3D gait analyses were performed on five healthy subjects under three different gait conditions: the normal gait without AFO, the SAFO gait with the conventional plastic AFO, and the AAFO gait with the developed AFO. As a result, the developed AAFO preeminently induced the normal gait compared to the SAFO. Additionally, AAFO prevented foot drop by proper plantarflexion during loading response and provided enough plantarflexion moment as a driving force to walk forward by sufficient push-off during pre-swing. AAFO also could prevent toe drag by proper dorsiflexion during swing phase. These results indicate that the developed AAFO may have more clinical benefits to treat foot drop and toe drag, compared to conventional AFOs, and also may be useful in patients with other orthotic devices.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

Experimental investigation on vortex induced forces of oscillating cylinder at high Reynolds number

  • Xu, Yuwang;Fu, Shixiao;Chen, Ying;Zhong, Qian;Fan, Dixia
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.167-180
    • /
    • 2013
  • Hydrodynamic characteristics of a bluff cylinder oscillating along transverse direction in steady flow were experimentally investigated at Reynolds number of $2{\times}10^5$. The effects of non-dimensional frequency, oscillating amplitude and Reynolds number on drag force, lift force and phase angle are studied. Vortex shedding mechanics is applied to explain the experimental results. The results show that explicit similarities exist for hydrodynamic characteristics of an oscillating cylinder in high and low Reynolds number within subcritical regime. Consequently, it is reasonable to utilize the test data at low Reynolds number to predict vortex induced vibration of risers in real sea state when the Reynolds numbers are in the same regime.

Estimation of damping induced by taut mooring lines

  • Xiong, Lingzhi;Lu, Wenyue;Li, Xin;Guo, Xiaoxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.810-818
    • /
    • 2020
  • A moored floating structure may exhibit resonant motion responses to low-frequency excitations. Similar to the resonant responses of many vibration systems, the motion amplitude of a moored floating structure is significantly affected by the damping of the entire system. In such cases, the damping contributed by the mooring lines sometimes accounts for as much as 80% of the total damping. While the damping induced by catenary mooring lines is well-investigated, few studies have been conducted on the damping induced by taut mooring lines, especially one partly embedded in soil. The present study develops a simple but accurate model for estimating the damping contributed by mooring lines. A typical type of taut mooring line was used as the reference and the hydrodynamic drag force and soil resistance were taken into consideration. The proposed model was validated by comparing its predictions with those of a previously developed model and experimental measurements obtained by a physical model. Case studies and sensitivity studies were also conducted using the validated model. The damping induced by the soil resistance was found to be considerably smaller than the hydrodynamic damping. The superposition of the wave frequency motion on the low-frequency motion was also observed to significantly amplify the damping induced by the mooring lines.

Flow past a Square Cylinder with an Angle of Attack (기울어진 정방형 실린더에 작용하는 유체력)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo;Choi, Choon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2754-2758
    • /
    • 2008
  • Numerical investigation has been carried out for laminar flow ($Re{\leq}150$) past a square cylinder in cross freestream with an angle of attack. This study would be the first step towards understanding flow-induced forces on cylindrical structures under a strong gust of wind from the viewpoint of wind hazards. Collecting all the numerical results obtained, we propose contour diagrams of drag/lift coefficients and Strouhal number (St) on an Re-Angle plane.

  • PDF

Impact of a Convectively Forced Gravity Wave Drag Parameterization in Global Data Assimilation and Prediction System (GDAPS) (대류가 유도하는 중력파 항력의 모수화가 GDAPS에 미치는 영향)

  • Kim, So-Young;Chun, Hye-Yeong;Park, Byoung-Kwon;Lee, Hae-Jin
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.303-318
    • /
    • 2006
  • A parameterization of gravity wave drag induced by cumulus convection (GWDC) proposed by Chun and Baik is implemented in the KMA operational global NWP model (GDAPS), and effects of the GWDC on the forecast for July 2005 by GDAPS are investigated. The forecast result is compared with NCEP final analyses data (FNL) and model's own analysis data. Cloud-top gravity wave stresses are concentrated in the tropical region, and the resultant forcing by the GWDC is strong in the tropical upper troposphere and lower stratosphere. Nevertheless, the effect of the GWDC is strong in the mid- to high latitudes of Southern Hemisphere and high latitudes of Northern Hemisphere. By examining the effect of the GWDC on the amplitude of the geopotential height perturbation with zonal wavenumbers 1-3, it is found that impact of the GWDC is extended to the high latitudes through the change of planetary wave activity, which is maximum in the winter hemisphere. The GWDC reduces the amplitude of zonal wavenumber 1 but increases wavenumber 2 in the winter hemisphere. This change alleviates model biases in the zonal wind not only in the lower stratosphere where the GWDC is imposed, but also in the whole troposphere, especially in the mid- to high latitudes of Southern Hemisphere. By examining root mean square error, it is found that the GWDC parameterization improves GDAPS forecast skill in the Southern Hemisphere before 7 days and partially in the Northern Hemisphere after about 5 days.

Response of Cable-Buoy Systems to Directional Random Waves (다방향 불규칙파랑에 의한 케이블과 정체시스템의 반응)

  • Jeon, Sang-Soo;John W. Leonard
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.1
    • /
    • pp.25-38
    • /
    • 1993
  • Numerical models of directional wave spectra for the analysis of offshore structural cable responses are verified. Alternative spreading models are used to predict wave-induced flows in water and for mooring systems. Hydrodynamic wave forces upon cable are estimated. using a Morison formula encompassing considerations for drag and for inertial forces both parallel and tangential to the slope of the cable. Numerical analysis for directional random waves. including consideration of displacement and velocity, trajectory, phase plane response. and tension are shown for mooring system cable responses at both the tether point for a buoy and at the anchor point. The effects of wave forces far different drag coefficients, various significant wave heights, and selected wave parameters are considered in the analysis. For the specific systems considered in the examples, it is demonstrated that wave period and height as well as wave spreading function parameters and drag coefficients, have an important effect upon the dynamic responses of the cable-buoy systems.

  • PDF