• 제목/요약/키워드: indoor wood

검색결과 115건 처리시간 0.029초

실내 보관 삼나무 목재의 재색 및 화학적·현미경적 변화 특성 (Chemical and Morphological Change and Discoloration of Cedar Wood Stored Indoor)

  • 이광호;차미영;정우양;배현종;김윤수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권6호
    • /
    • pp.566-577
    • /
    • 2009
  • 실내에서 일어나는 목재의 표면 열화특성을 재색, 화학적 및 해부학적 변화 차원에서 분석하였다. 실험대상으로는 실내에서 장기간 보관중인 삼나무 목제품을 사용하였다. 실내 보존 초기에는 황색도와 적색도가 급격히 변하였고 5년 사이에 백색도의 감소가 두드러졌다. 화학성분의 분석결과 셀룰로오스, 헤미셀룰로오스, 리그닌 성분 모두 감소하였으나 리그닌의 감소가 더 컸다. 현미경 관찰 결과 5년이 경과한 목제품에서는 목재표면에서 2~3개 층에서 리그닌이 분해되어 중간층이 분리되었다. 실내 환경조건에서 발생되는 표면 열화 특성은 야외에서 발생되는 표면열화 특성과 매우 유사하였으나 그 정도는 미약하였다.

황벽나무의 물리·역학적 특성 (Physical and Mechanical Characteristics of Phellodendron amure Ruprecht)

  • 김현우;변희섭;김병로
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권5호
    • /
    • pp.519-524
    • /
    • 2017
  • 본 연구는 황벽나무의 물리, 역학적 성질의 특성과 부후성을 조사하였다. 기건밀도는 실내, 외 방치한 목재에서 각각 0.41, $0.43g/cm^3$로 나타났다. 전수축율 시 T/R비는 실내, 외에서 각각 1.40, 1.32로 나타났다. 흡습성은 온도 $40^{\circ}C$ 상대습도 90% 경우 실내, 외에서 각각 16.30, 15.80%로 나타났다. 압축강도는 실내, 외에서 각각 43.81, 40.33 MPa 휨강도는 84.63, 68.80 MPa, 충격강도는 3.43, $4.00J/cm^2$, 경도는 횡단면에서 각각 47.92, 49.20 MPa로 나타났다. 경도는 횡단면에서 각각 47.92, 49.20 MPa로 나타났다. 1년간 실내에 방치한 목재와 실외에 방치한 목재는 부후에 강하고, 또한 T/R비도 낮은 편으로 치수가 안정한 나무로 판단된다.

Radon Exhalation from Five Wood Species

  • Lee, Ju Yong;Choi, Gyu Woong;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권6호
    • /
    • pp.735-747
    • /
    • 2018
  • Radon radiation exposures in home have been posed as a potential cancer hazard. This research aims to present the basic data of the indoor radon concentration level by examining the radon exhalation rates of wood species. Radon exhalation rates from five commonly used wood species in Korean wood building construction were measured with Continuous Radon Monitor (CRM), Model 1028 (Sun Nuclear Co., USA) using the Closed Chamber Method (CCM). The mass exhalation rate was observed to vary from $0.00089Bq{\cdot}kg^{-1}{\cdot}h^{-1}$ to $0.00181Bq{\cdot}kg^{-1}{\cdot}h^{-1}$, whereas the surface exhalation rate was observed to be $0.00677-0.01517Bq{\cdot}m^{-2}{\cdot}h^{-1}$. The radon exhalation rate of Quercus accutissima Carruth (white oak) which has the highest density showed the highest figure among the five wood species, on the other hand, the rest of four species showed similar results which were similar to the radon exhalation rates of wood in the U.S.A. and Canada. The average of the concentration measured by the CCM represented well up to the second half-life period (7.7 days). Because result of these small quantities seems to indicate that radon exhalation from the tested wood species has almost negligible impact, the main culprit of the high indoor radon concentration is clearly derived from the background of surrounding wood house. Therefore, as a safety precaution, infrastructures made of wood materials should be designed with the consideration of influx of radon and built accordingly. Furthermore, it is highly desirable that wood will be needed to use for furniture and interior finishing material in indoor environment.

Green Adhesives Using Tannin and Cashew Nut Shell Liquid for Environment-friendly Furniture Materials

  • Lee, Jeong-Hun;Jeon, Ji-Soo;Kim, Su-Min
    • 한국가구학회지
    • /
    • 제22권3호
    • /
    • pp.219-229
    • /
    • 2011
  • Sick building syndrome symptoms that are experienced by building occupants may be caused by toxic substances such as formaldehyde and VOCs, which are known to be emitted from building materials and wood composite products such as wood-based panel, furniture, engineered flooring and construction adhesive. In Korea, the use of wood composite products for indoor environments has increased over the last decade. Recently, wood composite products have been installed in approximately 95% of newly constructed residential buildings. The use of these products has resulted in problems related to human health, and consequently a realization about the importance of indoor air quality. In addition, consumer demand is increasing for natural materials because conventional building materials and wood composite products are made by adding urea-formaldehyde resin or they contain formaldehyde-based resin. More recently, many efforts have been made to reduce formaldehyde emission from building materials that laid in the indoor environment. Especially, if conventional formaldehyde-based adhesives are replaced with green adhesives for residential spaces, it is possible to reduce most of the emission amounts of formaldehyde in indoor environments. In line with this expectation, many researches are being conducted using natural materials such as tannin and cashew nut shell liquid (CNSL). This study discussed the affects and possibilities of green adhesives to reduce formaldehyde emission in indoor environments.

  • PDF

Comparison of Hygrothermal Performance between Wood and Concrete Wall Structures using Simulation Program

  • Yu, Seulgi;Chang, Seong Jin;Kang, Yujin;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권2호
    • /
    • pp.283-293
    • /
    • 2016
  • Owing to an increase in the air tightness of recent buildings, the natural ventilation rate was significantly lowered and the removal of accumulated moisture became difficult in these buildings. The hygrothermal performance of these buildings should be carefully considered to provide comfortable indoor environment by removing the moisture condensation risk and the mold growth potential. In this study, hygrothermal performance of two selected wall structures was investigated based on WUFI simulation program. The results displayed that the indoor temperature had impact on the moisture accumulation in the insulation layer for both modeled walls, showing that lower indoor temperature resulted in higher moisture accumulation, especially in the wood frame structure. Also, the yearly moisture accumulation profile exhibited a downward shift throughout the year by adding a vapour retarder with a lower sd-value. In addition, both of the two walls have condensation risk in winter, due to low temperature level. The wood frame structure has a bigger fluctuation and higher condensation risk than the concrete structure.

실내사용 목재의 연소 특성 분석(I) (Combustion Properties of Woods for Indoor Use (I))

  • 손동원;강석구
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권6호
    • /
    • pp.675-681
    • /
    • 2014
  • 최근 친환경 재료에 대한 국민들의 관심이 높아지면서 실내사용목재의 이용도 증가하고 있다. 본 연구는 실내사용 목재의 내화성 부여를 위한 기초자료로 활용될 수 있는 열특성 분석에 그 목적이 있다. 열방출률과 열방출량, 가스발생량, 중량감소 등의 연소성질을 열중량 분석(TGA) 및 콘칼로리미터(KS F ISO 5660-1)의 방법으로 분석하였다. 분석결과 목재의 재질적 특성은 연소적 특성으로 발현되었으며, 열적성질과 연소가스 발생량과의 관계는 상관관계가 높게 나타났다. 탄화층 형성에 의한 연소억제 효과도 수종에 따라 현저한 차이를 보였다. 총열방출량과 중량감소량은 상관관계가 높게 나타났다. 점화시간과 총열방출량 등의 자료는 목재의 내화성능부여 등의 기초 자료로서 매우 중요하리라 판단되었다.

Formaldehyde Deodorization Effect and Far-Infrared Emission Characteristics of Ceramics Prepared with Sawdust, Risk Husk, and Charcoal: Effect of Material Mixing Ratio

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권2호
    • /
    • pp.104-112
    • /
    • 2022
  • Indoor air quality is a very important environmental factor in modern society. However, air pollutants generated from various interior construction materials significantly affect the human body, including formaldehyde (HCHO) and volatile organic compounds that threaten public health by deteriorating indoor air quality. Effective in removing these harmful substances are porous materials, such as woodceramics. In this study, charcoal, a porous material, was added to rice husk, an agricultural by-product, and sawdust generated during the sawing process to prepare boards and ceramics at different mixing ratios, and the HCHO deodorization performance and far-infrared emission characteristics were measured. As the mixing ratio of charcoal increased, the deodorization rate of the boards and ceramics tended to increase. Overall, the deodorization rate was measured to be 80% to 90%, indicating that the boards and ceramics prepared with charcoal are suitable to be used for the purpose of deodorization. The effect of the material mixing ratio on far-infrared emissivity and emission power was insignificant.

바닥재로부터 방출되는 휘발성유기화합물과 폼알데하이드 특성 (Characteristics of VOCs and Formaldehyde Emitted from Floorings)

  • 박현주;장성기;서수연;임준호
    • 한국대기환경학회지
    • /
    • 제25권1호
    • /
    • pp.38-45
    • /
    • 2009
  • Since the seventies and the oil crisis, energy-saving measures have led to a reduction in the ventilation of room. The use of synthetic materials which emit various chemical substances had led to an increase in the concentration of indoor pollutants. "Sick building syndrome (SBS)" and "Sick house syndrome (SHS)" are worldwide problems. Also, the number of complaints about indoor air pollution caused by VOCs (Volatile organic compound) and HCHO (Formaldehyde) has increased. It is important that evaluating and understanding emission of indoor air pollutant from building materials. The object of this study was to evaluate emission test method for flooring such as wood based flooring, carpet tile, rubber tile, PVC sheet and tile, and to determine emission of TVOC and form-aldehyde. The quantity of TVOC and carbonyl compounds emission were sampled and measured by Tenax TA and gas chromatography/mass spectrometry (GC/MSD), 2,4-DNPH cartrige with ozone scrubber and high performance liquid from flooring. The TVOC concentration emitted from carpet tile was ($7.419\;mg/m^2 h$) the highest among 5 groups of test materials. In wood based flooring and PVC tile, the emitted concentration of toluene was high. And the dodecane emission was highest in carpet. The concentration of TVOC decreased by an increase in emission test period. After 7 days, the concentration of TVOC from floorings were about 50% below of the concentration at the first day. TVOC emission from wood based flooring, carpet tile, rubber tile, PVC sheet and tile were decreased in 28 days and remained steady after about 15 days. The concentration of formaldehyde emission from floorings showed extremely low.

자외선 조사에 의한 인도네시아 주요 조림수종 목재의 재색변화 (Color Change of Major Wood Species Planted in Indonesia by Ultraviolet Radiation)

  • 박세휘;장재혁;;;황원중;;김남훈
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권1호
    • /
    • pp.9-18
    • /
    • 2016
  • 본 연구에서는 인도네시아산 주요 조림 4수종 목재의 기후열화에 대한 내구성을 평가하기 위하여 재색변화를 조사하였다. 자외선, 촉진내후시험 및 야외노출 등의 세 가지 조건에서 실험하였고 색차계를 이용하여 재색변화($L^*a^*b^*$)와 색변화량(${\Delta}E*ab$)을 측정하였다. 그 결과, 공시수종 목재 모두 자외선 조사에 의해 목재의 색이 뚜렷하게 변화되었다. 자외선 노출조건에서 명도는 거의 변화가 없었고, 4수종 목재 모두 적색화 및 황색화가 진행되었다. 촉진내후시험 조건에서 공시목재 모두 백색화가 진행되었고, 녹색화 및 청색화가 진행되었다. 야외폭로 조건에서 Albizia재와 Gmelina재는 백색도가 감소하였고, Mangium재와 Mindi재는 백색도가 오히려 상승하였으며, 4수종 모두 녹색화 및 청색화가 진행되었다. 색변화량은 자외선노출 조건에서 Albizia재와 Gmelina재가 컸고 Mangium재와 Mindi재는 다소 작았다. 또한, 목재의 색변화는 자외선과 더불어 수분의 존재상태에 크게 의존하는 것으로 생각되었다. 결론적으로, 자외선 조사는 목재의 색상을 뚜렷하게 하여 목재의 가치를 향상시킬 수 있는 하나의 방법으로 생각되었다.