• Title/Summary/Keyword: indoor tracking System

Search Result 146, Processing Time 0.024 seconds

A Study on the Indoor/Outdoor Positioning System Based on Multiple Sensors (다중 센서 기반의 실내외 측위 시스템에 관한 연구)

  • Hwang, Chi-Gon;Lee, Hae-Jun;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.643-644
    • /
    • 2018
  • Recently indoor and outdoor location tracking systems are operated in different ways. The indoor positioning method uses WiFi and BLE beacon positioning, and the outdoor positioning uses GPS and PDR. In this paper, it is a device to measure position by using it. It is used to check whether it is indoors or outdoors when measuring based on a smart phone, A automatic conversion method is needed. When using GPS in the room, it is difficult to distinguish the floor or space. We propose a method to solve this problem.

  • PDF

A Study On RTLS(Real Time Location System) Based on RSS(Received Signal Strength) and RSS Characteristics Analysis with the External Factors (외적요인에 따른 RSS 특성 분석과 이를 이용한 실시간 위치 추적 시스템 구현에 관한 연구)

  • Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.76-85
    • /
    • 2011
  • In this paper, we analysed RSS characteristics by external factors and presented an efficient algorithm for real-time location tracking and its hardware system. The proposed algorithm enhanced the ranging accuracy using Kalman Filter based on the RSS DB. The location tracking system that consists of the tag, AP(Access Point), a data collector(Data Receiver) with IEEE 802.15.4(ZigBee) network environment, and location tracking application that reveal locations of each tag is implemented for the test environment. The location tracking system presented in this paper is implemented with MSP430 microprocessor manufactured by TI(Texas Instrument), CC2420 RF chipset and the location tracking application. With the results of the experiment, the proposed algorithm and the system can achieve the efficiency and the accuracy of location tracking with the average error of 19.12cm, and its standard deviation of 5.31cm in outdoor circumstance. Also, the experimental result shows that exact tracking of position in indoor circumstance cannot achieve because of vulnerable RSS with external circumstance.

Application of Lightself to Buildings as a Integrated Daylighting System (건축물 일체형으로서 광선반형 자연채광시스템의 건축물 적용기법에 관한 연구)

  • Kim, Jeong-Tai;Chung, Yu-Gun
    • KIEAE Journal
    • /
    • v.2 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • For sustainable building design, using day lighting is considered a variable technique to save energy and create comfort indoor environments. Specially, the lightself as a integrated daylighting system is one of the most important techniques due to it's durability, availability and lighting performance. This paper aims to analyze the development and architectural application of a lightself system to buildings as a integrated day lighting system. For the study, advanced lightself systems developed in abroad such as "Integrated Enveloped and Lighting System", "Anidolic Daylighting System" and etc. are analyzed. Also, the architectural examples are investigated. As results, the new technologies such as optically treated reflective and sun-tracking are adopted to improve daylight performance. And, lots of environmentally friendly buildings are installed on integrated lightself system.

Installation and Operation of a GPS Jammer Localization System (GPS 전파위협원 위치추적 시스템 구축 및 초기 운용)

  • Lim, Deok Won;Lim, Soon;Chun, Sebum;Heo, Moon Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.524-533
    • /
    • 2015
  • In this paper, results for an installation and operation of a GPS jammer localization system were analyzed. The jammer localization system was developed by Korea Aerospace Research Institute and it consists of 4 Receiver Stations, a Central Tracking Station, and a Monitoring Station. The system was installed at Incheon International Airport in November 2014; each Receiver Stations were installed at rooftop of buildings apart from 4km, and the Central Tracking Station and a Monitoring Station were installed at indoor. Results of the operation can be monitored through web-browser in real-time, Korea Aerospace Research Institute and Incheon International Airport Corporation are continuously monitoring them. So far, there is no jamming signal which affects GPS receivers around the airport, however, some abnormal signals were frequently received at Receiver Stations. Therefore, the characteristics of those signals were also analyzed in this paper.

Study of Multi-Resident Location Tracking Service Model Based on Context Information (상황정보 기반의 다중 거주자 위치 추적 서비스에 관한 연구)

  • Won, Jeong Chang;Man, Ko Kwang;Chong, Joo Su
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.5
    • /
    • pp.141-150
    • /
    • 2014
  • In recent years, because of the development of ubiquitous technology in healthcare research is actively progress. Especially, healthcare service area is change to home for the elderly or patients from hospital. The technology to identify residents in a home is crucial for smart home application services. However, existing researches for resident identification have several problems. In this case, residents are needed to attach of various sensors on their body. Also relating private life, it is difficult to apply to resident's environment. In this paper, we used constraint-free sensor and unconscious sensor to solve these problems and we limited using of sensor and indoor environment in the way of working economical price systems. The way of multi-resident identification using only these limited sensors, we selected elements of personal identifications and suggested the methods in giving the weight to apply these elements to systems. And we designed the SABA mechanism to tract their location and identify the residents. It mechanism can distinguish residents through the sensors located each space and can finally identify them by using the records of their behaviors occurred before. And we applied the mechanism designed for applications to approve this location tracking system. We verified to the location tracking system performance according to the scenario.

Heat Load Estimation-Based Switching Explicit Model Predictive Temperature Control for VRF Systems (시스템 에어컨의 온도 제어를 위한 부하 예측 기반 스위칭 모델 예측 제어)

  • Jun-Yeong Kim;S.M. Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.3
    • /
    • pp.123-130
    • /
    • 2024
  • This paper proposes an EMPC (Explicit Model Predictive Controller) for temperature tracking control based on heat load prediction by an ESO (Extended State Observer) for a variable cooling circulation system with multiple indoor units connected to one outdoor unit. In this system, heat transfer and heat loss relative to the input temperature are modeled using system dynamics. Using this model, we design an EMPC based on an ESO that is robust to temperature changes and depends on airflow. To determine the stability of both the controller and the observer, asymptotic stability is verified through Lyapunov stability analysis. Finally, to validate the performance of the proposed controller, simulations are conducted under three scenarios with varying airflow, set temperature, and heat load.

Flight Test Measurement and Assessment of a Flapping Micro Air Vehicle

  • Kim, Jong-Heon;Park, Chan-Yik;Jun, Seung-Moon;Chung, Dae-Keun;Kim, Jong-Rok;Hwang, Hee-Chul;Stanford, Bret;Beran, Philip;Parker, Gregory;Mrozinski, Denny
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.238-249
    • /
    • 2012
  • Flight test of flapping micro air vehicles (FMAVs) is carried out using an instrumented measurement system to obtain various engineering parameters and hence to assess the flight performance of the vehicles through the data investigation. An indoor flight test facility equipped with a motion capture system and tracking cameras is used for the work presented in this paper. Maneuvers including straight-level flight, ground flapping, takeoff and landing are tested. Spatial position and orientation data are obtained from the retro-reflective tracking markers attached to the vehicles. Subsequent test analysis is carried out by generating performance parameters from raw data and then assessing the flight performance by comparison of the vehicles. The main findings of this work confirm that the test method and procedures presented here enable the systematic numerical data measurement and assessment of the flying performances of these vehicles, and show the applicability for the test and evaluation of general flapping MAVs.

Mobile Robot Localization using Ubiquitous Vision System (시각기반 센서 네트워크를 이용한 이동로봇의 위치 추정)

  • Dao, Nguyen Xuan;Kim, Chi-Ho;You, Bum-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2780-2782
    • /
    • 2005
  • In this paper, we present a mobile robot localization solution by using a Ubiquitous Vision System (UVS). The collective information gathered by multiple cameras that are strategically placed has many advantages. For example, aggregation of information from multiple viewpoints reduces the uncertainty about the robots' positions. We construct UVS as a multi-agent system by regarding each vision sensor as one vision agent (VA). Each VA performs target segmentation by color and motion information as well as visual tracking for multiple objects. Our modified identified contractnet (ICN) protocol is used for communication between VAs to coordinate multitask. This protocol raises scalability and modularity of thesystem because of independent number of VAs and needless calibration. Furthermore, the handover between VAs by using ICN is seamless. Experimental results show the robustness of the solution with respect to a widespread area. The performance in indoor environments shows the feasibility of the proposed solution in real-time.

  • PDF

Study on the Positioning Method using BLE for Location based AIoT Service (위치 기반 지능형 사물인터넷 서비스를 위한 BLE 측위 방법에 관한 연구)

  • Ho-Deok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • Smart City, a key application area of the AIoT (Artificial Intelligence of Things), provides various services in safety, security, and healthcare sectors through location tracking and location-based services. an IPS (Indoor Positioning System) is required to implement location-based services, and wireless communication technologies such as WiFi, UWB (Ultra-wideband), and BLE (Bluetooth Low Energy) are being applied. BLE, which enables data transmission and reception with low power consumption, can be applied to various IoT devices such as sensors and beacons at a low cost, making it one of the most suitable wireless communication technologies for indoor positioning. BLE utilizes the RSSI (Received Signal Strength Indicator) to estimate the distance, but due to the influence of multipath fading, which causes variations in signal strength, it results in an error of several meters. In this paper, we conducted research on a path loss model that can be applied to BLE IPS for proximity services, and confirmed that optimizing the free space propagation loss coefficient can reduce the distance error between the Tx and Rx devices.

Implementation of u-Care System Based on Multi-Sensor in u-Home Environment (u-Home 환경에서 멀티센서 기반 u-Care System 구현)

  • Lee, Hee-Jeong;Kang, Sin-Jae;Jang, Hyung-Geun;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.135-147
    • /
    • 2011
  • As the number of elderly people living alone has been increasing in the recent years, systems for their safety have been required, and some related services or pilot systems have been operating. These systems provide the monitoring service for the activities of the elderly people living alone with indoor location tracking technology using the various sensors. However, most systems provide services on expensive infrastructure such as attached tags and mobile devices. In this point, this paper attempts to suggest a system based on low cost sensors to collect event data in home environment. And a main characteristic of the system is that people can monitor the results of provided services through web browser in real time and the system can provide related context information to guardians and health care managers through SMS of mobile phone.