• Title/Summary/Keyword: indoor spatial data

Search Result 114, Processing Time 0.024 seconds

A Markerless Augmented Reality Approach for Indoor Information Visualization System (실내 정보 가시화에 의한 u-GIS 시스템을 위한 Markerless 증강현실 방법)

  • Kim, Albert Hee-Kwan;Cho, Hyeon-Dal
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.195-199
    • /
    • 2009
  • Augmented reality is a field of computer research which deals with the combination of real-world and computer-generated data, where computer graphics objects are blended into real footage in real time and it has tremendous potential in visualizing geospatial information. However, to utilize augmented reality in mobile system, many researches have undergone with GPS or marker based approaches. Localization and tracking of current position become more complex problem when it is used in indoor environments. Many proposed RF based tracking and localization. However, it does cause deployment problems of large sensors and readers. In this paper, we present a noble markerless AR approach for indoor navigation system only using a camera. We will apply this work to mobile seamless indoor/outdoor u-GIS system.

  • PDF

Application of Spatial Information Technology to Shopping Support System (공간정보기술을 활용한 상품구매 지원 시스템)

  • Lee, Dong-Cheon;Yun, Seong-Goo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.189-196
    • /
    • 2010
  • Spatial information and smart phone technology have made innovative improvement of daily life. Spatial and geographic information are in practice for various applications. Especially, spatial information along with information and telecommunication technology could create new contents for providing services for convenient daily life. Spatial information technology, recently, is not only for acquiring location and attribute data but also providing tools to extract information and knowledge systematically for decision making. Various indoor applications have emerged in accordance with demands on daily GIS(Geographic information system). This paper aims for applying spatial information technology to support decision-making in shopping. The main contents include product database, optimal path search, shopping time expectation, automatic housekeeping book generation and analysis. Especially for foods, function to analyze information of the nutrition facts could help to improve dietary pattern and well-being. In addition, this system is expected to provide information for preventing overconsumption and impulse purchase could help economical and effective purchase pattern by analyzing propensity to consume.

Time-Dependent Optimal Routing in Indoor Space (실내공간에서의 시간 가변적 최적경로 탐색)

  • Park, In-Hye;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.361-370
    • /
    • 2009
  • As the increasing interests of spatial information for different application area such as disaster management, there are many researches and development of indoor spatial data models and real-time evacuation management systems. The application requires to determine and optical paths in emergency situation, to support evacuees and rescuers. The optimal path in this study is defined to guide rescuers, So, the path is from entrance to the disaster site (room), not from rooms to entrances in the building. In this study, we propose a time-dependent optimal routing algorithm to develop real-time evacuation systems. The network data that represents navigable spaces in building is used for routing the optimal path. Associated information about environment (for example, number of evacuees or rescuers, capacity of hallways and rooms, type of rooms and so on) is assigned to nodes and edges in the network. The time-dependent optimal path is defined after concerning environmental information on the positions of evacuees (for avoiding places jammed with evacuees) and rescuer at each time slot. To detect the positions of human beings in a building per time period, we use the results of evacuation simulation system to identify the movement patterns of human beings in the emergency situation. We use the simulation data of five or ten seconds time interval, to determine the optimal route for rescuers.

  • PDF

Deep Learning-based Interior Design Recognition (딥러닝 기반 실내 디자인 인식)

  • Wongyu Lee;Jihun Park;Jonghyuk Lee;Heechul Jung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.47-55
    • /
    • 2024
  • We spend a lot of time in indoor space, and the space has a huge impact on our lives. Interior design plays a significant role to make an indoor space attractive and functional. However, it should consider a lot of complex elements such as color, pattern, and material etc. With the increasing demand for interior design, there is a growing need for technologies that analyze these design elements accurately and efficiently. To address this need, this study suggests a deep learning-based design analysis system. The proposed system consists of a semantic segmentation model that classifies spatial components and an image classification model that classifies attributes such as color, pattern, and material from the segmented components. Semantic segmentation model was trained using a dataset of 30000 personal indoor interior images collected for research, and during inference, the model separate the input image pixel into 34 categories. And experiments were conducted with various backbones in order to obtain the optimal performance of the deep learning model for the collected interior dataset. Finally, the model achieved good performance of 89.05% and 0.5768 in terms of accuracy and mean intersection over union (mIoU). In classification part convolutional neural network (CNN) model which has recorded high performance in other image recognition tasks was used. To improve the performance of the classification model we suggests an approach that how to handle data that has data imbalance and vulnerable to light intensity. Using our methods, we achieve satisfactory results in classifying interior design component attributes. In this paper, we propose indoor space design analysis system that automatically analyzes and classifies the attributes of indoor images using a deep learning-based model. This analysis system, used as a core module in the A.I interior recommendation service, can help users pursuing self-interior design to complete their designs more easily and efficiently.

A Prototype for Real-time Indoor Evacuation Simulation System using Indoor IR Sensor Information (적외선 센서정보기반 실시간 실내 대피시뮬레이션 시스템 프로토타입)

  • Nam, Hyun-Woo;Kwak, Su-Yeong;Jun, Chul-Min
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2012
  • Indoor fire simulators have been used to analyse building safety in the events of emergency evacuation. These applications are primarily focused on simulating evacuation behaviors for the purpose of checking building structural problems in normal time rather than in real time situations. Therefore, they have limitations in handling real-time evacuation events with the following reasons. First, the existing models mostly experiment the artificial situations using randomly generated evacuees while real world requires actual data. Second, they take too long time in operation to generate real time data. Third, they do not produce optimal results to be used in rescueing or evacuation guidance. In order to solve these limitations, we suggest a method to build an evacuation simulation system that can be used in real-world emergency situations. The system performs numerous simulations in advance according to varying distributions of occupants. Then the resulting data are stored in DBMS. The actual person data captured in infrared sensor network are compared with the simulation data in DBMS and the querried data most closely is provided to the user. The developed system is tested using a campus building and the suggested processes are illustrated.

UAV and LiDAR SLAM Combination Effectiveness Review for Indoor and Outdoor Reverse Engineering of Multi-Story Building (복층 건물 실내외 역설계를 위한 UAV 및 LiDAR SLAM 조합 효용성 검토)

  • Kang, Joon-Oh;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.69-79
    • /
    • 2020
  • TRecently, smart cities that solve various problems in cities based on IoT technology are in the spotlight. In particular, cases of BIM application for smooth management of construction and maintenance are increasing, and spatial information is converted into 3D data through convergence technology and used for safety diagnosis. The purpose of this study is to create and combine point clouds of a multi-story building by using a ground laser scanner and a handheld LiDAR SLAM among UAV and LiDAR equipment, supplementing the Occluded area and disadvantages of each technology, examine the effectiveness of indoor and outdoor reverse design by observing shape reproduction and accuracy. As a result of the review, it was confirmed that the coordinate accuracy of the data was improved by creating and combining the indoor and outdoor point clouds of the multi-story building using three technologies. In particular, by supplementing the shortcomings of each technology, the completeness of the shape reproduction of the building was improved, the Occluded area and boundary were clearly distinguished, and the effectiveness of reverse engineering was verified.

Synthetic Trajectory Generation Tool for Indoor Moving Objects (실내공간 이동객체 궤적 생성기)

  • Ryoo, Hyung Gyu;Kim, Soo Jin;Li, Ki Joune
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.59-66
    • /
    • 2016
  • For the performance experiments of databases systems with moving object databases, we need moving object trajectory data sets. For example, benchmark data sets of moving object trajectories are required for experiments on query processing of moving object databases. For those reasons, several tools have been developed for generating moving objects in Euclidean spaces or road network spaces. Indoor space differs from outdoor spaces in many aspects and moving object generator for indoor space should reflect these differences. Even some tools were developed to produce virtual moving object trajectories in indoor space, the movements generated by them are not realistic. In this paper, we present a moving object generation tool for indoor space. First, this tool generates trajectories for pedestrians in an indoor space. And it provides a parametric generation of trajectories considering not only speed, number of pedestrians, minimum distance between pedestrians but also type of spaces, time constraints, and type of pedestrians. We try to reflect the patterns of pedestrians in indoor space as realistic as possible. For the reason of interoperability, several geospatial standards are used in the development of the tool.

A Fundamental Study about a Quality Certification of 3D Precision Indoor Geospatial Information - Focused on Yeongdeungpo Station - (3차원 정밀 실내공간정보 품질인증 방안에 관한 기초연구 - 영등포역을 중심으로-)

  • Lee, Ki Sung;Jeong, In Hun;Choi, Yun Soo;Kim, Sang Bong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.3-14
    • /
    • 2015
  • As buildings in the downtown area, such as the complex building connected to the skyscraper and the underground facility, have become large and complex, the range of target domain of the space information service is rapidly expanding to the interior space; it is considered that this change will create various demands of service such as the indoor geospatial information base safety, the management of facility, and the interior navigation in the future, along with spread of mobile devices and development of IT technology. As for the indoor geospatial information, however, there is no certification standard of the established indoor geospatial information data quality, so preparing the certification standard is urgent. Thus, this study reviewed foreign and domestic research cases and prepared measures for quality verification of the indoor geospatial information to conduct a verification test of the Yeongdeungpo Station indoor geospatial information, established in 2014. As a result, through the verification test of the method and standard of the indoor geospatial information quality certification suggested by this research, it was identified that the uniform and higher quality data could be classified, and the types of error high frequently occurring could be investigated. These results are expected to be utilized as the basic data for establishing quality certification system for the indoor geospatial information in the future.

Navigable Space-Relation Model for Indoor Space Analysis (실내 공간 분석을 위한 보행 공간관계 모델)

  • Lee, Seul-Ji;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.75-86
    • /
    • 2011
  • Three-dimensional modeling of cities in the real-world is an essential task for city planning and decision-making. And many three-dimensional city models are being developed with the development of wireless Internet and location-based services that identify the location of users and provide the information increases for consumers. Especially, in case of urban areas of Korea, indoor space modeling as well as outdoor is needed due to the high-rise buildings densities. Also location-based services should be provided through spatial analysis such as the shortest path based on a space model. Many studies of three-dimensional city models are feature models. In a feature model, space is represented by combining primitives, and relationships among spaces are represented only if shared primitives are detected. So relationships between complex three-dimensional objects in space is difficult to be defined through the feature models. In this study, Navigable space-relation model(NSRM) is developed, which is topological data model for efficient representation of spatial relationships between objects based on the network structure.

A Study on Expression Characteristics of Indoor Spaces and Food related Elements in Fusion Korean Restaurants (퓨전 한식 레스토랑에 나타난 실내공간과 음식관련요소의 표현특성에 관한 연구)

  • Lee, Ji-Hyun;Oh, Hye-Kyung
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.2
    • /
    • pp.204-213
    • /
    • 2008
  • In this age of information ruled by new technologies and knowledge, the world is interconnected as a single community, and within this trend of globalization, new cultural codes are emerging through temporal fusion between the past and the present and spatial fusion between different regions and countries. In this situation, it seems meaningful to review Korean fusion foods and restaurants serving such foods, as well as to consider their future directions. Thus, the objective of the present study was to survey and analyze Korean fusion restaurants representing Korean culture not only in Korea, but also in foreign cities, and to identify the expression characteristics of such restaurants. Based on restaurants recommended in relevant magazines and on Internet sites, 18 spaces were selected, visited, and surveyed, in which tradition and modernism were well-mixed. Data on the shapes, materials, colors, and patterns of spatial elements and food-related elements, including photographs, were collected and analyzed. The results are as follows. Of the 18 restaurants, 13 (72%) showed temporal fusion in both spatial and food-related elements, 4 showed temporal fusion in spatial elements and cultural fusion in food-related elements, and 1 showed cultural fusion in both spatial and food-related elements. In general, the spaces were mainly designed with modern elements and partially with traditional elements (ceilings, windows, furniture, articles), and the fusion of food-related elements was made in diverse forms that included temporal fusion restructuring traditional menus contemporarily, and cultural fusion harmonizing traditional food with Western cookery.