• Title/Summary/Keyword: indoor humidity

Search Result 487, Processing Time 0.022 seconds

Evaluation of Indoor Air Quality in the Railroad Electric Rolling Stock - Focused on Temperature and Humidity - (철도 전동차내의 실내공기질 평가 - 온도 및 습도를 중심으로 -)

  • Park Duck-Shin;Bae Sang-Ho;Jung Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.610-615
    • /
    • 2003
  • Electric rolling stock is one of major public transportation because of an increase in population and heavy traffic problems. The passengers under the influenced of indoor air quality such as air temperature, relative humidity and air velocity. Ventilation system on passenger cars should be designed for the health and comfort of the passengers. One of the main aim is to create an acceptable thermal environment without draught problems. The draught sensation increases when the air temperature decreases and the air velocity increases. Airflow in passenger cars is turbulent. Lateral temperature and humidity gradients in the electric rolling stock have been studied. And, the difference in the mean temperature and relative humidity measured at 0.7, 0.9, 1.2, 1.7 m above from the floor.

  • PDF

Influence of Moisture on Mold Growth in Building Materials (건축자재 내의 수분이 곰팡이 성장에 미치는 영향)

  • Seo, Janghoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.852-857
    • /
    • 2012
  • Recently, the indoor air pollution by microbes such as fungi and mites have become a concern as important research topic on indoor air quality. Fungal growth is significantly affected by humidity. In this study, we examined the influence of relative humidity on the surface of building materials and the water content of building materials on the fungal growth rate by measuring the mycelium length of fungi in the fungal detector placed on the surface of building materials. As a result, even if the relative humidity on the surface of building materials is identical, the more water content of building materials is, the more fungi grow faster. It was suggested that fungal growth rate depends on not only the relative humidity on the surface of building materials but also the water content of building materials.

The Research on the Indoor Temperature and Humidity Control of Green Roof by Solid Growing Medium in Summer (고형화된 식생기반재를 활용한 여름철 옥상녹화의 실내 온·습도 조절효과 연구)

  • Lee, Hyun-Jung;Yeom, Dongwoo;Lee, Kyu-In
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • Purpose: Various studies on the soil-based green roof systems have been conducted, and a lot of green roof systems were developed. A growing medium board is one of them which was developed for better application and maintenance, however the effect and performance of this material need to be verified. On this background, the purpose of this study is to prove cooling load reduction of green roof by monitoring experiment on the full-scale mock-ups. Method: To do this, Solid growing medium boards were installed on the mock-ups, and indoor temperature and humidity were monitored and analyzed. Result: As a results, the green roof with solid growing medium board were verified effective for controlling indoor temperature in summer.

A Study on the Place of Break Chair Thermal Environment Change with the Introduction of the Indoor Water Space (실내 수공간으로 인한 온열환경 변화와 휴식의자 배치 방안)

  • Kang, Yujin;Song, Junhee;Chung, Okyoung;Kim, Sumin
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.3
    • /
    • pp.239-246
    • /
    • 2013
  • Recently the building is introducing the indoor water space. Thermal environment change with the introduction. Consequently, this study shows how water space in the public facility affects the indoor environment. We had put our experiment to measure the humidity and temperature differences in different distances of water space. The result of this study is as follows. First, We found that even though there's a water space, it makes no big change in temperature by different distance. The temperature was only maintained by a cooler. Second, As there's a water space, the humidity was affected by within 1.5 m of it. Through our experimental result, we have started our study to make a water space effective.

  • PDF

Behavior of Formaldehyde Concentration by Temperature and Humidity of Indoor and Outdoor in Underground Shopping Center and Subway(II) (지하상가 실내외 및 지하철의 온도와 습도에 따른 Formaldehyde 거동(II))

  • 권우택
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.1
    • /
    • pp.67-75
    • /
    • 1994
  • Formaldehyde has been in widespread industrial use since World War II . Numerous sources of formaldehyde are present in the indoor environment. Additionally, the current trend toward tighter, more energy efficient buildings with lower ventilation rates has led to increase concentrations of this and other pollutants generated indoors. In this paper, the field survey was carried out once a month from January to MarctL 1994 to measure indoor and outdoor formaldehyde concentration in several underground locations in Seoul. The results could be summarized as follows : 1. At Yang- jae underground shopping center, the mean formaldehyde concentration was 77.8ppb for indoor and 68.4ppb for outdoor. At Ban- po underground shopping center, it was 175.8ppb for indoor and 127.3ppb for outdoor. At Jam- shil underground shop ping center, it was 135.2ppd for indoor and 34.6ppb for outdoor. Indoor the No.2 sub way line, it was 105.6ppb. The formaldehyde concentration using Berge equation was as follows : At Yang- jae underground shopping center, the mean formaldehyde concentration was 85.99ppb for indoor and 72.75ppb for outdoor At Ban- po underground shopping center, it was 254. 17ppb for indoor and 138.14ppb for outdoor. At Jam- shil underground shopping center, it was 249.13ppb for indoor and 36.87ppb for outdoor. Indoor the No.2 subway line, it was 131.73ppb. 3, The result of correlation analysis indicated that the relationship between temperature and formaldehyde concentration is very high( $\gamma $= 0.831 ∼ 0.974). 4. Also, the relationship between humidity and formaldehyde concentration is variant ($\gamma $ = 0.246 ∼0.999). 5. The mean formaldehyde concentration indoor and outdoor Ban- po underground shop ping center and indoor Jam- shil underground shopping center and indoor the No.2 sub way line exceed the American Society of Heating, Refrigeration, Air- conditioning Engineers( ASHRAE) stflndard of 100ppb(120 $\mu $g/m$^{3}$).

  • PDF

A Study on Thermal Comfort of Korea Men감s Wear in Summer - Based on Indoor Environment conditions - (하계 남성복의 온열쾌적감에 관한 연구 - 실내 환경조건을 중심으로 -)

  • 정상열;고경태
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1997.10a
    • /
    • pp.364-368
    • /
    • 1997
  • The purpose of this Study was to determine thermal sensation and physiological responses for men in summer indoor environment, under various air temperature and relative humidity, with male university students. Subjective Evaluation, Heart Rate Variability(HRV), Electroencephalogram(EEG) were examined. We found that comfort of people was achieved at 50% R.H., 24C, and the difference of skin temperature was found at the calf area as air temperature changes. At low air temperature and low humidity, heart rate was decreased, but there was no change at brain wave, keeping a-wave.

  • PDF

A Seasonal Indoor Thermal Conditions of a Newly-launched Training Ship

  • Hwang, Kwang-Il;Shin, Dong-Keol;Lee, Jin-Uk;Lee, Sang-Il
    • Journal of Navigation and Port Research
    • /
    • v.33 no.4
    • /
    • pp.289-294
    • /
    • 2009
  • The living performances of crews and passengers in cabins have been less received attention, while Korea is a top leading country in ship building industry. To develop a high value added ships like 5-star cruisers, researches on the comfort and productivity in cabins should be carried out with urgent. The purpose of this study is to measure and analyze of the ship's indoor thermal conditions in spring, summer and winter, and also to compare the seasonal differences, of which conditions are supplied from and controlled by marine HVAC The temperature, humidity and air supply volume of 5 different needs of cabins on a training ship were measured through a year, which was launched at Dec. 2005 and totally 246 crews can go on board for education. The following results were obtained: (1)In the spring, the temperature in cabins was measured as $20{\sim}25^{\circ}C$ and humidity was below 30%. (2)In the summer, the temperatures was controlled at $21{\sim}27^{\circ}C$ in almost cabins and humidity was between $40{\sim}60%$ which is known as comfort conditions. (3)In the winter, temperature and humidity was maintained between $19{\sim}26^{\circ}C$, and humidity was between $10{\sim}50%$. (4)It is clear that the humidity conditions in cabins are not properly controlled at all through a year to satisfy the Comfort Standards provided by ASHRAE and/or ISO, In conclusion, humidification and dehumidification of cabins must be treated with importance for more comfort living and working environments for crews and passengers.

Analysis on Living Factor and Actual State of Indoor Thermal Environment in Apartment Units during Winter (아파트의 겨울철 실내온열환경 실태와 생활요인 분석)

  • Choi, Yoon-Jung;Jeong, Youn-Hong
    • Journal of the Korean housing association
    • /
    • v.19 no.4
    • /
    • pp.97-105
    • /
    • 2008
  • The purposes of this study were to determine the actual state of the indoor thermal environment in apartment units and to analyze the relationship between the living factors and indoor thermal elements. The field surveys consisted of measurements of physical elements and observations of living factors. In addition, the residents of 20 apartment units were interviewed to survey their subjective response. Field surveys were carried out from January to March 2007. Measuring elements were air temperature, globe temperature, and relative humidity. The results showed that the average of indoor temperature for the houses was $21.2{\sim}27.2^{\circ}C$, while 4 houses exceeded the comfort zone. The average of globe temperature for the houses was $21.3{\sim}27.5^{\circ}C$, while 6 houses exceeded the comfort zone. The mean relative humidity was $19.5{\sim}58.8%$, which is a relatively dry condition. The residents' average clothing value was $0.39{\sim}0.89$ clo(average 0.68 clo). The average thermal sensation vote on each room was $4.2{\sim}4.8$, which is 'neutral' to 'slightly warm'. Living factors had significant effect on indoor temperature in regression analysis were ventilation time(outdoor air exchange), opening time of door through balcony, and gas cooker use time.

Combined Effects of PMV and Acoustics on Indoor Environmental Perception (PMV와 음환경의 복합 작용이 실내 환경 지각에 미치는 영향)

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.135-142
    • /
    • 2016
  • Purpose: The purposes of this paper are to investigate effects of indoor thermal environment on acoustical perception and effects of acoustics on indoor thermal perception, and to understand basic human perception on indoor environment. Method: Subjective assessment was performed in an indoor environmental chamber with 24 university students. Thermal conditions with PMV -1.53, 0.03, 1.53, 1.83 were simulated with a VRF system, a humidifier, a dehumidifier, and a ventilation system. Six noise sources - Cafe, Fan, Traffic, Birds, Music, Water- with sound levels of 45, 50, 55, 60 dBA were played for 2 minutes in random order. Temperature sensation, temperature preference, humidity sensation, humidity preference, noisiness, loudness, annoyance, and acoustic preference were assessed using bipolar visual analogue scales. The ANOVA and Turkey's post hoc test were used for data analysis. Result: Thermal environmental perceptions were not altered through 2 minutes noise exposure. Acoustical perceptions were altered by thermal conditions. The results were consistent with previous papers, however, the noise exposure time should be carefully considered for further development.

Analysis on Living Factor and Present Condition of Indoor Thermal Environment in Apartment Units during Winter (아파트의 겨울철 실내온열환경 실태와 생활요인 분석)

  • Choi, Yoon-Jung;Jeong, Youn-Hong
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.281-284
    • /
    • 2008
  • The purposes of this study were to make clear the present condition of indoor thermal environment in apartment units and to analyze the relation of the living factors with indoor thermal elements. The field surveys consisted of measurements on physical elements and observations on living factors and interview on resident's subjective responses were carried out in 20 apartment units. The field surveys were carried out during the $January{\sim}March$ 2007. Measuring elements were air temperature, globe temperature, and relative humidity. As results, the averages of indoor temperature each houses were $21.2{\sim}27.2^{\circ}C$, the number of houses exceed the comfort zone were 4. The averages of globe temperature each houses were $21.3{\sim}27.5^{\circ}C$, 6 houses exceeded the comfort zone. The means of relative humidity were $19.5{\sim}58.8%$, relatively dry condition. The clothing value of residents were $0.39{\sim}0.89$ clo(average 0.68 clo). The average of thermal sensation ratings each room were $4.2{\sim}4.8$, 'neutral'$\sim$'slightly warm'. The results of regression analysis on relations of living factors with the thermal elements are as follow; ventilation time(outdoor air exchange), door opening time with balcony, and gas cooker use time had significant effect on indoor temperature.

  • PDF