• Title/Summary/Keyword: indoor air quality(IAQ)

Search Result 186, Processing Time 0.029 seconds

Evaluation of Exposure Characteristics of Fine Dusts by Subway Lines (지하철역사의 호선별로 미세먼지의 노출특성에 대한 평가)

  • Hwang, Sung Ho;Kim, Jeong Oh
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.1
    • /
    • pp.71-76
    • /
    • 2017
  • Objectives: This study aimed to assess the environmental factors that affect particulate matters (PM10) and to compare with outdoor PM10 concentrations in an underground subway stations. Methods: The PM10 level was determined from May 2013 to September 2013 in the Seoul subway stations in four lines. PM mini-vol portable sampler sampler was used to collect PM10 for 6 hrs. Arithmetic means of PM10 concentrations with standard deviation (SD) were calculated. Paired t-test was used to compare the differences between indoor PM10 and outdoor PM10 concentrations with correlation analysis which was used to identify the association between indoor PM10 concentrations and environmental factors. Results: There were no different PM10 concentrations significantly between line 1, 2, 3 and 4 in an underground subway stations. Passenger number was positively associated with PM10 concentration while construction year was negatively associated with PM10 concentrations. Indoor PM10 concentrations were significantly higher than those in outdoor PM10 concentrations. PM10 concentrations were higher in the stations which were constructed before 1990s rather than the stations constructed after 1990s. Conclusion: PM10 levels in the underground subway stations varied greatly depending on the construction year. Therefore, it might need to be more careful management to the stations which constructed in before 1990s.

Concentration Characteristics of Indoor and Outdoor Airborne Total Fiber Particles and Identification of Asbestos in Gyeongnam Provinces (경남지역의 실내외 공기 중 총섬유 입자의 농도특성 및 석면 입자의 확인)

  • Park, Hee-Eun;Park, Jeong-Ho;Kim, Hyoung-Kab
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.2
    • /
    • pp.119-127
    • /
    • 2012
  • Objectives: The aim of this study is to identify concentration characteristics of indoor and outdoor airborne total fiber particles and asbestos in Gyeongnam Provinces. Methods: This study investigated concentration characteristics of indoor fiber particles from 748 schools and 38 public facilities as well as outdoor particles from 11 sites through PCM (phase contrast microscope). SEM/EDX (scanning electron microscope/energy dispersive using X-ray analysis) was used to obtain physicochemical information of asbestos fiber particles. The study identified asbestos rate in the 15 samples from indoor and outdoor airborne total fiber particles. Results: 1. The average indoor airborne concentrations of total fiber particles were $0.0011{\pm}0007$ f/cc in schools and $0.0015{\pm}0007$ f/cc in public facilities by PCM. Over 90% of the fiber particles were identified as single fibers. 2. The average outdoor airborne concentrations of total fiber particles were $0.0007{\pm}0002$ f/cc, and they were lower than those of indoor airborne concentrations. 3. The results showed that the form of asbestiform was diverse as skein of thread like form and long needle, which was relatively narrower than that of glass fiber and rock wool. 4. The results of SEM/EDX analysis of 15 areas where total fiber particle was relatively high showed that the form was rather similar to that of asbestos, but chemical composition was proven to be non-asbestos. Conclusions: The concentration of indoor and outdoor airborne total fiber particles of Gyeongnam Provinces satisfied the IAQ (Indoor air quality) level of 0.01 f/cc and asbestos was not found in most of the samples by SEM/EDX.

A Prediction on Indoor Contaminant Diffusion Characteristics of a Training Ship by Mechanical Ventilation System (기계식 환기시스템에 의한 선내 오염물질 확산 특성 예측)

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1124-1131
    • /
    • 2011
  • This study performed the prediction about the indoor contaminant's diffusion characteristics which can be affected by the mechanical ventilation system on a training ship. The results are as followings. It is clear that the contaminants are spread to most of the indoors, regardless of the contamination beginning zone. About 65~100 minutes later, the contaminant densities of whole indoor zones are evaluated as clean. Comparing the contamination beginning zone being located at higher deck(scenario A) to the contamination beginning zone being located at lower deck(scenario B), although the contaminant density by scenario A is 10 times higher than that by scenario B, the number of contaminated zones are 50% less. The contaminant densities are evaluated as to be rapidly decreased when the outside air induction ratio against design volume is over 75%.

A Study on the Air Flow Characteristics in an Apartment Complex and Ventilation Performance of an Individual Unit for Improving IAQ (주동형태 변화에 따른 아파트 단지내 기류분석 및 단위주호의 환기성능에 관한 연구)

  • Lee, Jung-Hyun;Lee, Seung-Hee;Kim, Taeyeon
    • KIEAE Journal
    • /
    • v.5 no.3
    • /
    • pp.11-16
    • /
    • 2005
  • The recent trends of high-density and high-rise in apartment housing have caused the problems of decrease in ventilation rates and increase of indoor pollutant contaminants. SHS(Sick House Syndrome) has now become a major issue and threats the health of residents. To solve these indoor air problems, increase in ventilation rate is considered as one of the most efficient approach. Thus, the recent housing development is pursuing improvement in the site design and the layout of apartment building blocks to promote natural ventilation is now investigated as one of the fundamental solutions. This study was focused on the air flow characteristics of outdoor environment in an apartment complex to keep the pollutants out of the site. Age of air and pressure difference have been used as indices of the outdoor air quality. Four different types of apartment building layouts have been analyzed by CFD simulation. This study again selected a real apartment housing complex as a case study model. By analyzing the pressure differences between the front and rear of an apartment building block, the ventilation performance in each individual unit was evaluated, and its impact on ventilation performance is investigated by analyzing the stagnant air around the apartment building blocks. During this process, existing patterns of apartment housing layout have been evaluated, and the most appropriate site layout has been chosen to analyze the outdoor airflow patterns. Based on the analysis of airflow patterns of site layout, the possibilities of improving ventilation performance of an individual apartment housing is proposed.

Improving the natural ventilation in multi-housing units of tower-type buildings according to their shapes and directions (탑상형 공동주택의 주동형태와 배치각에 따른 주호의 자연환기 성능)

  • Yoo, Seon-Yong;Kim, Ji-Yoeng;Kim, Tae-Yeon;Leigh, Seung-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.897-902
    • /
    • 2006
  • Natural ventilation is an effective method for improving IAQ(Indoor Air Quality) and removing heats in buildings. In oder to use natural ventilation, many factors such as wind pressure around the buildings and possibility of air intake on different shapes need to be known. On this paper, the natural ventilation performance in multi-housing units of tower-type buildings was investigated. Tower-type multi-housing buildings are recently more and more constructed for they may change urban landscape and get more openness in multi-housing site. However, such housing buildings have problems with natural ventilation because of the various directions of the building units. The purpose of this paper is to find the proper building direction regarding to wind direction in order to optimize air intake in every units in the building.

  • PDF

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.

Evaluation of Airborne and Surface Lead Concentrations in Preschool Classroom (유아교육시설의 표면 및 공기 중 납 농도 평가)

  • Yoon, Chung-Sik;Paik, Do-Hyeon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.1-7
    • /
    • 2006
  • This study was performed to investigate airborne lead concentration and surface lead contents in preschool facilities. Arithmetic mean of indoor lead concentration in urban area was $44.7\;ng/m^3$ (Geometric mean $32.1\;ng/m^3$) whereas outdoor concentration was $39.5\;ng/m^3$ (GM $22.8\;ng/m^3$). In rural area, airborne lead concentrations were $14.2\;ng/m^3\;(GM\;7.9 ng/m^3),\;12.6\;ng/m^3\;(GM\;5.6 ng/m^3)$, respectively. There is statistical significance of the lead concentrations among the locations of preschool facilities. About $37\%$ of qualitative lead check samples was positive and mainly was found in lead based paint. Though lead concentrations on the floor and window sill were well below the US EPA and HUD standard (floor $40\;{\mu}g/ft^2\;(4.3\;{\mu}g/100\;cm^2)$, window sill $250\;{\mu}g/ft^2\;(26.9\;{\mu}g/100\;cm^2)$, respectively), there were much samples which exceed the standard, i.e., $29\%$ of surface wall, $20\%$ of the desk and chair, $100\%$ of painted wood box of tested samples. In view of our study and hazard of lead to children, we recommended that the contents of lead in preschool facilities should be lowered as possible.

Development of a building materials database; Volatile organic compounds, formaldehyde emission rates and chemical compositions (건축자재의 오염물질 방출 데이터베이스 개발; 휘발성유기화합물, 폼알데하이드 방출강도 및 화학조성)

  • Yu, Young-Jae;Lee, Chul-Won;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • A material database has been developed for VOCs and formaldehyde emitted from building materials in this study. New classification system has been made by correlating the classification methods used in Korean Air Cleaning and Environmental Protection Agency. The developed databases include emission rates of TVOC, 5VOC and formaldehyde emitted from each building material. In addition, the databases can be used as an input variable to estimate indoor air quality (IAQ) using computer simulation since they also contain chemical component and general imformation. Box plot was used to do statistical analysis for emission rates of formaldehyde and TVOCs from different types of building materials. Also we confirmed the building materials worsening IAQ by categorizing the emission characteristic of different types of pollutants.

Analysis of VOCs Infiluencing Environment Factors Using Statistics in Apartment House (통계분석을 이용한 아파트내 휘발성유기화합물의 환경인자 분석)

  • Lee, Se-Haeng;Kim, Nan-Hee;Lee, Kyoung-Soek;Park, Kang-Soo;Park, Seung-Yeol;Kim, Do-Sool;Kang, Yeong-Ju;Kim, Eun-Sun;Kim, Dong-Su
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.435-445
    • /
    • 2012
  • The aim of this study is to understand the characteristics of volatile oranic compounds (VOCs) and provide information about the present Indoor Air Quality (IAQ) at residential apartments. All samples were collected in 60-min interval using the tenax absorption trap between May, 2011 and February, 2012. And the effects of environmental factors such as temperature, humidity and construction characteristics were analyzed in relation to the measured concentrations. The results of this study showed that the mean concentration of VOCs was lower than the Ministry of the Environment's standards for maintenance of indoor air quality. The correlation analysis showed that ethylbenzene and xylene (r=0.916, p<0.01), toluene and ehtylbenzene (r=0.810, p<0.01), toluene and xylene (r=0.803, p<0.01) and toluene and styrene (r=0.588, p<0.01) were significant. The result of regression analysis was found that the influenece factors associated with the concentration of VOCs were the age and location of the apartment, remodeling, the temperature and the season.

Characteristics of Volatile Organic Compounds Emitted from Wood-based Panels (목질제품에서 방출되는 휘발성 유기화합물 특성 연구)

  • Park, Hyun-Ju;Son, Youn-Suk;Lim, Bo-A;Kim, Jo-Chun;Park, Sang-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.616-623
    • /
    • 2010
  • Recently, interests in indoor air quality (IAQ) have been increased; however, a number of researchers have mainly focused on anthropogenic volatile organic compounds (AVOC) emitted from building materials. Therefore, the properties of natural VOC (NVOC) and anthropogenic VOC (AVOC) emitted from wood-based panels was investigated in this work. VOCs emitted from these panels were sampled through Tenax TA/Cabotrap and analyzed by GC-MS and GC-FID. Comparisons were made concerning TVOC, NVOC, and composition ratios of NVOC. It was revealed that TVOC emission rates of midium density fiber (MDF) were the highest. Besides, it was found that emissions of NVOC from wood-based panels were much higher than those of anthropogenic AVOC except for plywood of Oceania timber. It was also observed that the composition ratio of NVOC emitted from plywood of Pinus radiata was the highest as 65% of TVOC. Major NVOC components were monoterpene compounds such as $\alpha$-pinene, $\beta$-pinene, d-limonene, camphene and $\alpha$-terpinene. It was concluded that the composition rates of VOCs emitted from building materials were clearly different according to the raw materials and manufacturing methods.