• Title/Summary/Keyword: indoor air, carbon dioxide ($CO_2$)

Search Result 75, Processing Time 0.019 seconds

Study on Emission Control for Precursors Causing Acid Rain (VI) : Suitability of Aquatic Plant Biomass as a Co-combustion Material with Coal

  • Hauazawa, Atsushi;Gao, Shidong;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • In China, energy and environmental problems are becoming serious owing to rapid economic development. Coal is the most problematic energy source because it causes indoor and outdoor air pollution, acid rain, and global warming. One type of clean coal technology that has been developed is the coal-biomass briquette (or bio-briquette, BB) technique. BBs, which are produced from pulverized coal, biomass (typically, agricultural waste), and a sulfur fixation agent (slaked lime, $Ca(OH)_2$) under high pressure without any binder, have a high sulfur-fixation effect. In addition, BB combustion ash, that is, the waste material, can be used as a neutralization agent for acidic soil because of its high alkalinity, which originates from the added slaked lime. In this study, we evaluated the suitability of alternative biomass sources, namely, aquatic plants, as a BB constituent from the perspective of their use as a source of energy. We selected three types of aquatic plants for use in BB preparation and compared the fuel, handling, and environmental characteristics of the new BBs with those of conventional BBs. Our results showed that air-dried aquatic plants had a higher calorific value, which was in proportion to their carbon content, than agricultural waste biomass; the compressive strength of the new BBs, which depends on the lignin content of the biomass, was high enough to bear long-range intracontinental transport in China; and the new BBs had the same emission control capacity as the conventional BBs.

An Assessment of Environmental Characteristics Associated with the Level of Endotoxin Concentration in Hospital Lobbies (일부 종합 병원 로비의 공기 중 엔도톡신 농도에 미치는 환경 요인 평가)

  • Lee, Kyeong-Min;Yeom, Jeongkwan;Lee, Wonjae;Ryu, Seung-Hun;Park, Dongjin;Park, Dong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.310-320
    • /
    • 2014
  • Backgrounds: Endotoxin, which found in the outer membrane of the gram-negative bacteria cell wall, makes up almost all of the lipopolysaccharide(LPS). When people are exposed to endotoxin,it can result in diverse health effects such as an airway irritation and inflammation, fever, malaise, bronchitis, allergic asthma, toxic pneumonitis, hypersensitivity lung disease. Cases among the elderly, children or pregnant can occur more frequently than a healthy adult if they are repeatedly exposed to the existing endotoxin. Therefore, we investigated and assessed the environmental characteristics associated with the airborne endotoxin concentration level in six hospital lobbies. Method: Endotoxin from indoor air in six hospital lobbies was measured by an area sampling method and analyzed according to American Society for Testing and Materials International(ASTM international) E2144-01. Total suspended particulate(TSP), carbon dioxide($CO_2$), temperature and humidity were also measured by using direct reading measurements or airborne sampling equipment at the same time. Environmental characteristics were appropriately divided into two or three groups for a statistics analysis. One-way analysis variable(one-way ANOVA) was used to examine a difference of the endotoxin concentration, depending on the environmental characteristics. In addition, only variables with p-value(p<0.25) were eventually designed to the best model by using multiple regression analysis. Results: The correlation analysis result indicated that TSP(p=0.003) and $CO_2$(p<0.0001) levels were significantly associated with endotoxin concentration levels. In contrast, temperature(p<0.068) and humidity(p<0.365) were not associated with endotoxin concentration. Levels of endotoxin concentration were statistically different among the environmental characteristics of Service time(p=0.01), Establishment of hospital(p<0.001), Scale of hospital(p=0.01), Day average people using hospital(p=0.03), Cleaning time of lobby(p=0.05), Season(p<0.001), and Cleaning of ventilation system(p<0.001) according to ANOVA. Finally, the best model(Adjusted R-square=72%) that we designed through a multiple regression test included environmental characteristics related to Service time, Area of lobby, Season, Cleaning of ventilation system, and Temperature. Conclusions: According to this study, our result showed a normal level of endotoxin concentration in the hospital lobbies and found environmental management methods to reduce the level of endotoxin concentration to a minimum. Consequently, this study recognized to be requirement for the management of ventilation systems and an indoor temperature in order to reduce the level of endotoxin concentration in the hospital lobbies.

Photosynthetic Response of Foliage Plants Related to Light Intensity, $CO_2$ Concentration, and Growing Medium for the Improvement of Indoor Environment (실내 환경 개선을 위한 광도, 이산화탄소 농도 및 배지 종류에 따른 실내 관엽식물들의 광합성 반응)

  • Park, Sin-Ae;Kim, Min-Gi;Yoo, Mung-Hwa;Oh, Myung-Min;Son, Ki-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.203-209
    • /
    • 2010
  • This study was performed to investigate photosynthetic responses of 4 foliage plants in relation to light intensity, carbon dioxide concentration, and media, and to select efficient plants for the indoor environment control based on the results. Four foliage plants used in this study included Syngonium podophyllum, Schefflera arboricola cv. Hong Kong, Dieffenbachia amoena, and Dracaena deremensis cv. Warneckii Compacta. The plants cultivated in two different growth media, peatmoss and hydroball, and subjected to various light intensities (0, 30, 50, 80, 100, 200, 400, and $600\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD) and $CO_2$ levels (0, 50, 100, 200, 400, 700, 1000, and $1500\;{\mu}mol{CO_2}{\cdot}mol^{-1}$). As a result of the photosynthetic rate of foliage plants according to change of light intensity and $CO_2$ levels, Schefflera arboricola and Dieffenbachia amoena showed high apparent quantum yield, which stands for the photosynthetic rate under low light intensity, and both plants also recorded higher photosynthetic rate under high $CO_2$ concentration compared to the other two indoor plants. Dracaena deremensis showed the lowest photosynthetic rate under the low light intensity or high $CO_2$ concentration. There were inconsistent results in photosynthetic rate of foliage plants grown in peatmoss or hydroball. Higher photosynthetic rate was observed in Schefflera arboricola with peatmoss rather than hydroball as light and $CO_2$ concentration increased. However, hydroball had a positive effect on Dieffenbachia amoena in terms of photosynthetic rate. In case of Syngonium podophyllum, peatmoss induced higher photosynthetic rate according to increased light intensity, but there was no effect of media on the rate under various $CO_2$ treatements. In contrast, media did not affect to photosynthetic efficiency of Dracaena deremensis subjected to various light intensities and the rate of Dracaena deremensis with peatmoss was a little high when $CO_2$ concentration increased. In conclusion, potential plants for the indoor air pulification and environmental control were Schefflera arboricola and Dieffenbachia amoena because they showed high photosynthetic rate under typical indoor conditions, low light intensity and high $CO_2$ concentration.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

Emissions of Odor, Ammonia, Hydrogen Sulfide, and Volatile Organic Compounds from Shallow-Pit Pig Nursery Rooms

  • Kafle, Gopi Krishna;Chen, Lide
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.76-86
    • /
    • 2014
  • Purpose: The objective of this study was to measure emissions of gases (ammonia ($NH_3$), hydrogen sulfide ($H_2S$) and carbon dioxide ($CO_2$)), volatile organic compounds (VOC) and odor from two shallow pit pig nursery rooms. Gas and odor reduction practices for swine operations based on the literature were also discussed. Methods: This study was conducted for 60 days at a commercial swine nursery facility which consisted of four identical rooms with mechanical ventilations. Two rooms (room 1 (R1) and room 2 (R2)) with different pig numbers and ventilation rates were used in this study. The pig manure from both the R1 and R2 were characterized. Indoor/outdoor temperatures, ventilation rates/duration, $NH_3$, $H_2S$, $CO_2$, and VOC concentrations of the ventilation air were measured periodically (3-5 times/week). Odor concentrations of the ventilations were measured two times on two days. Three different types of gas and odor reduction practices (diet control, chemical method, and biological method) were discussed in this study. Results: The volatile solids to total solids ratio (VS/TS) and crude protein (CP) value of pig manure indicated the pig manure had high potential for gas and odor emissions. The $NH_3$, $H_2S$, $CO_2$ and VOC concentrations were measured in the ranges of 1.0-13.3, 0.1-5.7, 1600-3000 and 0.0-1.83 ppm, respectively. The $NH_3$ concentrations were found significantly higher than $H_2S$ concentrations for both rooms. The odor concentrations were measured in the range of $2853-4432OU_E/m^3$. There was significant difference in odor concentrations between the two rooms which was due to difference in pig numbers and ventilation duration. The literature studies showed that simultaneous use of dietary control and biofiltration practices will be more effective and environmentally friendly for gas and odor reductions from pig barns. Conclusions: The gas and odor concentrations measured in the ventilation air from the pig rooms indicate an acute need for using gas and odor mitigation technologies. Adopting diet control and biofiltration practices simultaneously could be the best option for mitigating gas and odor emissions from pig barns.