• Title/Summary/Keyword: indoor Plant

Search Result 255, Processing Time 0.022 seconds

Analysis of Teachers' Perceptions to Establish the Management Direction of Outdoor Space in an Elementary School (초등학교 외부공간 관리방향 설정을 위한 교사의 인식 분석)

  • Jeong, Na-Ra;Jeong, Hyun-Jeong
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.19 no.3
    • /
    • pp.38-47
    • /
    • 2020
  • This study analyzed the perceptions of teachers to establish the direction for managing the space outside an elementary school. Satisfaction with outdoor school spaces is influenced by the satisfaction with tree and flower plantation and outdoor rest spaces. This study found that the longer the working years of a teacher, the higher their awareness of the importance and necessity of outdoor spaces in the school. Respondents emphasized the lack of manpower and budget, as well as the indifference of the administration as hindrances to the management of outdoor spaces in the school. The outdoor space in the school should include a secure play area, plant education space, class practice spaces, and a rest area. Furthermore, the space outside the elementary school should support learning, playing, and resting. To this end, facilities such as benches, pergolas, outdoor classrooms, ecological ponds, farms, and flower beds should be provided. In an outdoor space, plants featured in textbooks, seasonal plants, and those that provide shade can be planted along with labels to provide information and thereby promote learning. The teachers expected that the management of the external space will have an educational and emotional effect on students. In response to the innovation of the school spaces, it is necessary to continuously manage the external spaces to achieve educational and emotional effects by organically connecting the outdoor spaces with the indoor space. For this purpose, it is required to provide support for securing budgets and manpower, and to introduce relevant policies.

Effects of Deep Sea Water on the Liberation of Monospore and Growth in three species Porphyra (Rhodophyta, Bangiales) (김속식물 3종의 생장과 단포자방출에 미치는 해양심층수의 영향)

  • Kim, Seung-Oh;Kim, Nam-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The objective of the present study was carried out to clarify the effects of deep sea water on the growth and maturation of $Porphyra$ (Rhodophyta, Bangiales). Foliose thalli for indoor culture were collected from Yeongok ($P.$ $okamurae$) in Gangwon Prefecture, Tongyeong ($P.$ $suborbiculata$ f. $latifolia$) and Namhae ($P.$ $yezoensis$ f. $narawaensis$) in Gyongnam Prefecture respectively. Monospores were cultured at five temperatures (5, 10, 15, 20 and $25^{\circ}C$) with a photon irradiance of $80{\mu}m^{-2}s^{-1}$ under photoperiods of 14L:10D and 10L:14D in surface, deep and mixed seawater in respectively. The fast growth of foliose thalli were observed in $P.$ $suborbiculata$ f. $latifolia$ cultured at deep seawater under $15^{\circ}C$ and 10L:14D. In three species, the optimum growth occurred at 10 and $15^{\circ}C$ under deep and mixed seawater and short day-length. In general, monospores from the cultured thalli were liberated within three weeks after incubation under $10-25^{\circ}C$ and both photoperiods. From the result of this study, deep seawater is considered that the natural species of the genus $Porphyra$ can be useful for the development as the new cultivars.

A Study of the Cooling Effect of an Evaporation-Type Cool Roof Fan (기화방열식 Cool Roof Fan의 냉풍효과에 대한 연구)

  • Kim, Yeong Sik;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.191-200
    • /
    • 2016
  • The ventilation effect of a ventilation system, which is classified as the forced ventilation and natural ventilation, is predominantly dependent on the combination of air supply and discharge. Perhaps the simplest ventilation is merely supplying the air as it is. However, to improve the indoor working environment during the summer, an air supply that is cooled to some extent has been widely adopted. Recently, a cooling method utilizing the vaporization of water was introduced. In this study, the performance of an evaporation-type air supply unit that was produced by Japan K-company and was installed in a shoe-manufacturing plant in Busan was investigated. The purpose of the experiment was to measure how much the supplied air could be cooled. From this experimental study, we confirmed that the evaporation-type air supply system is efficient, capable of improving the working environment during the summer while minimizing the energy cost.

Effects of Lettuce Cultivation Using Optical Fiber in Closed Plant Factory (폐쇄형 식물공장내 태양광 파이버를 이용한 상추 재배효과)

  • Lee, Sanggyu;Lee, Jaesu;Won, Jinho
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.105-109
    • /
    • 2020
  • This study was conducted to the improvement of solar light-based artificial light supply system and effect of lettuce cultivation. The artificial light supply system was consisted of units such as light source, power, system measurement and controller. The light source supply was composed of a solar transmitter and an LED lamp. The power supply consisted of an leakage breaker, SMPS, LED controller and relay. The solar transmitter was made of a quartz optical fiber with optimal light transmission. Artificial light used white lamp among LEDs. System measurement and control consisted of touch screen, Zigbee communication module and light quantity sensor. The results of test confirmed that the LED light is automatically activated when the intensity measured by the light intensity sensor is 200 μmolm-2s-1 or less. Moreover, the leaf length, root length, chlorophyll content and root fresh weight of optical fiber treatment was hight than LED lamp treatment. Therefore, it can be inferred that the energy-saving solar light collector device can be effective in the indoor lettuce production. However, the use of LED lamp is also recommended to assure the availability of sufficient sunlight in cloudy and rainy days.

Evaluation of Effective Dose and Exposure Levels of Radon in Office and Plant Buildings (일부 제조업 사업장의 사무 및 공장동에서의 라돈농도 수준 및 유효선량 평가)

  • Chung, Eun Kyo;Kim, Ki Woong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.38-45
    • /
    • 2017
  • Objectives: Radon may be second only to smoking as a cause of lung cancer. Radon is a colorless, tasteless radioactive gas that is formed via the radioactive decay of radium. Therefore, radon levels can build up based on the amount of radium contained in construction materials such as phospho-gypsum board or when ventilation rates are low. This study provides our findings from evaluation of radon gas at facilities and offices in an industrial complex. Methods: We evaluated the office rooms and processes of 12 manufacturing factories from May 14, 2014 to September 23, 2014. Short-term data were measured by using real-time monitoring detectors(Model 1030, Sun Nuclear Co., USA) indoors in the office buildings. The radon measurements were recorded at 30-minute intervals over approximately 48 hours. The limit of detection of this instrument is $3.7Bq/m^3$. Also, long-term data were measured by using ${\alpha}-track$ radon detectors(${\alpha}-track$, Rn-tech Co., Korea) in the office and factory buildings. Our detectors were exposed for over 90 days, resulting in a minimum detectable concentration of $7.4Bq/m^3$. Detectors were placed 150-220 cm above the floor. Results: Radon concentrations averaged $20.6{\pm}17.0Bq/m^3$($3.7-115.8Bq/m^3$) in the overall area. The monthly mean concentration of radon by building materials were in the order of gypsum>concrete>cement. Radon concentrations were measured using ${\alpha}-track$ in parallel with direct-reading radon detectors and the two metric methods for radon monitoring were compared. A t-test for the two sampling methods showed that there is no difference between the average radon concentrations(p<0.05). Most of the office buildings did not have central air-conditioning, but several rooms had window- or ceiling-mounted units. Employees could also open windows. The first, second and third floors were used mainly for office work. Conclusions: Radon levels measured during this assessment in the office rooms of buildings and processes in factories were well below the ICRP reference level of $1,000Bq/m^3$ for workplaces and also below the lower USEPA residential guideline of $148Bq/m^3$. The range of indoor annual effective dose due to radon exposure for workers working in the office and factory buildings was 0.01 to 1.45 mSv/yr. Construction materials such as phospho-gypsum board, concrete and cement were the main emission sources for workers' exposure.

The Realization on GAS Sensor Module for Inteligent Wireless Communication (지능형 무선통신용 가스 센서 모듈 구현)

  • Kim, Hyo-Chan;Weon, Young-Su;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.123-132
    • /
    • 2012
  • Gas sensors has been used very differently that depending on following purposes; Automotive (exhaust gas, fuel mixture gas, oxygen, particulates), agriculture / food industry (fresh, stored, CO2, humidity, NH3, nitrogen oxide gas, organic gas, toxic gas emitted from pesticides and insecticides), industrial / medical (chemical gas, hydrogen, oxygen and toxic gases), military (chemical weapon), environmental measurements (CO and other air pollution consisting of sulfur and nitrogen gas), residential (LNG, LPG, butane, indoor air, humidity). The types of industrial toxic substances are known about 700 species and many of these exist in gaseous form under normal conditions. he multi-gas detection sensors will be developed for casualties that detect the most important and find easy three kinds of gases in marine plant; carbon dioxide(CO2), carbon(CO), ammonia(NH3). Package block consists of gas sensing device minor ingredient, rf front end, zigbee chip. Develope interworking technology between the sensor and zigbee chip inside a package. Conduct a performance test through test jig about prototype zigbee sensor module with rf output power and unwanted emission test. This research task available early address when poisonous gas leaked from large industrial site and contribution for workers' safety at the enclosed space.

Environment in Apartment Verandas at Three Floors, and Change in Growth of Selected Ornamental Plants under Simulated Light Intensities (아파트 베란다 층별 기상환경 측정과 이에 따른 모의 광도가 오색마삭줄과 피토니아의 생육에 미치는 영향)

  • Son, Moon-Sook;Song, Ju-Yeon;Jeong, Byoung-Ryong
    • Journal of agriculture & life science
    • /
    • v.45 no.3
    • /
    • pp.43-51
    • /
    • 2011
  • This project was conducted to measure actual temperature, relative humidity (RH), and light intensity at different apartment floors and to suggest suitable indoor plants by investigating morphological changes of Treophelosparmum asiatioum and Fittonia verchaffeltii var. argyroneura as affected by light intensity. Temperature and RH in apartment verandas were measured in three different (2nd, 9th, and 16th) floors on three different buildings for 30 days seasonally. The light intensity, temperature, and RH were recorded outside (parking area) and inside apartment verandas for 24 hours on a selected sunny summer day (between Aug. 19 and Sept. 14, 2008). Based on the first study, we investigated effect of simulated light intensity (40, 70, 100, and $600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) on changes in growth and development of T. asiatioum and F. verchaffeltii var. argyroneurain growth chambers. However, daily mean light intensity of 2nd, 9th, and 16th floors was different each other as it was about 40, 70, and $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. In the growth chamber experiment, plant height, internode length, and leaf length and width were not affected significantly by light intensity, but changes in leaf color were apparent in the new leaves with the increasing light intensity. The results suggest that T. asiatioum could be best fit to high, and F. verchaffeltii var. argyroneura to lower floor verandas, considering their aesthetic values.

Comparing the Effects of Ventilation and Air Purification Plants on Radon Concentration in the Lower and Upper Floors of a Building (건물 저층과 고층에서 환기와 공기정화 식물을 통한 라돈 농도의 비교)

  • Gong, Yu-jin;Nam, So-Yeong;Shin, Min-Seo;Jang, Hey-Rim;Jeon, Min-Cheol;Yoo, Se-Jong;Kim, Seong-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.881-889
    • /
    • 2020
  • The objective of this study was to quantitatively measure the changes in radon concentration due to ventilation and air purification plants in the lower and upper floors of a building. This study measured and compared radon concentration in the lower and upper floors of the building by using a radon meter when the room was closed, it was ventilated, and air purification plants were installed at a specific time. One-way ANOVA was conducted to evaluate the effect of treatment (i.e., closure, ventilation, and air purification plants) on radon concentration. The results of this study showed that ventilation and air purification plants significantly decreased radon concentration in the lower and upper floors of the building, but the effect of ventilation and that of air purification plants were not significantly different. Therefore, it will be possible to reduce radon concentration effectively when ventilation and air purification plants are used appropriately.

Insecticidal Effect of Moutan cortex radicis Extract for Control the Western Flower Thrips, Frankliniella occidentalis, on Greenhouse Pepper (시설 고추에 발생하는 꽃노랑총채벌레 방제를 위한 목단피 추출물의 살충효과)

  • Mi Hye Seo;Kyung Hye Seo;Kyung San Choi;Sun-Young Lee;Jung Beom Yoon;Jung-Joon Park
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In addition to causing direct feeding damage to a variety of greenhouse crops, Frankliniella occidentalis also inflicts indirect harm by facilitating the transmission of the tomato spotted wilt virus. Historically, the prevention of F. occidentalis infestations has relied heavily on pesticide use. However, this approach has led to significant side effects in agricultural ecosystems, including the development of pest resistance and challenges in effective prevention. In response to these issues, research has been directed towards identifying alternative substances that circumvent the tolerance developed against chemical pesticides. Extracts from sixty-seven medicinal plants were prepared by soaking them in water for 24 hours at room temperature. These extracts were then applied to adult F. occidentalis, with particular attention to moutan extract treatment. This treatment demonstrated a 100% insecticidal effect on the first day. The moutan extract, specifically, was prepared using 50% ethanol, after which the ethanol and water were removed via a rotary evaporator. The resultant product was then lyophilized into a powder and used after being diluted with water. In indoor experiments, a 40% diluted solution was sprayed onto F. occidentalis, exhibiting a 100% insecticidal effect 24 hours post-treatment. Furthermore, a pot test indicated a 78% insecticidal effect on the first day of application. Ongoing research includes the analysis of active substances that demonstrate exceptional insecticidal properties and the conduct of on-site validation tests. The application of the aforementioned extract is anticipated to be effective in the prevention of F. occidentalis infestations.

Experimental Study for the Development of the Mixing Ratio as a Compaction Pile (다짐말뚝 재료로서 쇄석과 저회의 적정 혼합비 도출을 위한 실험적 연구)

  • Leem, Hansoo;Kim, Sunkon;Lee, Jooho;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.5-16
    • /
    • 2012
  • In the case of using the soil materials created by cutting in-situ ground directly without adjusting particle size, it is recommendable to seek the compaction property or material constant required for filling design or density control through indoor test, and many studies on this subject have been carried out during that time. The researches conducted during that time, however, were focused on the mixed materials with different diameters that exist in a natural condition. There has been no study conducted using coal fly ash that is by-product of the thermal power plant that is actively considered as the building materials. Therefore, this study was aimed at implementing compaction test and examining the basic engineering property in order to explore the influence of crushing the particles through compacting the admixture of crushed stone and coal fly ash produced from thermal power plant on its engineering property, and then the impact of the admixture volume of each material on compaction property and material property by conducting the One-Dimensional Compression Test. As result of compaction test, the optimum moisture ratio of coal fly ash was shown to be approx. 23%. As result of compaction test in accordance with the mixed ratio of coal fly ash and crushed stone under the same compaction energy and moisture ratio, dry unit weight tended to drop when the mixed ratio of coal fly ash exceeded 30%, while it reached approx. $1.81gf/cm^3$ when the mixed ratio was 30%. As result of One-Dimensional Compression Test in accordance with the mixed ratio of crushed stone and coal fly ash, the change in void ratio by particle crushing was at the highest level in the case of coal fly ash 100%, while the lowest level in the case of crushed stone 100%. In the case of mixed materials of crushed stone and coal fly ash, compression index was at the lowest level in case of coal fly ash 30%, and therefore this ratio of mixed material was judged to be the most stable from an engineering aspect.