• 제목/요약/키워드: indoor Plant

검색결과 255건 처리시간 0.029초

A Study on Dissolve and Remove Analysis of Pollutants in Drinking Water by Suspected Cancer Causing Organic Chemicals using AOPs (Advanced Oxidation Processes) & M/F Hybird Process (고도산화와 정밀여과막 혼성공정을 이용한 먹는 물에 존재하는 발암원인으로 의심되는 유기화학성분의 분해 및 제거분석에 관한 연구)

  • An, Tai-Young;Park, Mi-young;Hur, Jang-hyun;Jun, Sang-ho;Han, Mi-Ae;An, Yoon-Hee
    • Journal of Korean Society on Water Environment
    • /
    • 제23권2호
    • /
    • pp.193-200
    • /
    • 2007
  • The AOPs research defined by creating a sufficient amount of OH radicals from the dissolution of organic materials through photoxidation and research for a complete elimination of residual organic materials by membrane are actively ongoing. This research focuses on the hybrid processing of AOPs and M/F membrane to dissolve and eliminate organic chemicals in drinking water which are suspected of carcinogens. For this purpose, underground water was used as a source of drinking water for the hybrid processing of AOPs oxidation and M/F membrane, and a pilot plant test device was installed indoor. Carcinogenic chemicals of VOCs and pesticide were artificially mixed with the drinking water, which was then diluted close to natural water in order to examine treatment efficiency and draw optimal operation conditions. The samples used for this experiment include four chemicals phenol, chloroform, in VOCs and parathion, carbaryl in pesticide. As a result of the experiments conducted with simple, and compound solutions, the conditions to sufficiently dissolve and eliminate carcinogenic chemicals from the hybrid processing of where carcinogens were artificially added are : (hydrogen peroxide) prescribed solution 100 mg/L under pH 5.5~6.0, and the temperature $12{\sim}16^{\circ}C$, at the normal temperature and pressure. $d-O_3$ volume of 5.0 ppm and above and 30-40 minutes of reaction time are most appropriate and using MF/UF for membrane was ideal.

Study on the Improvement Process for the Food Waste Resource Facility (II) - Focus on Deodorization Facility of DDM Environment Resource Center - (음식물류 폐기물 자원화시설의 공정개선에 관한 연구(II) - DDM환경자원센터의 탈취시설 사례를 중심으로 -)

  • Kim, Choong-Gon;Bae, Yoonhwan;SHIN, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제27권1호
    • /
    • pp.33-38
    • /
    • 2019
  • This study refers to the deodorization of DDM Environmental Resource Center, which is operating abnormally in the food waste public-resource facilities that are operating nationwide, in accordance with the initial operating conditions. Issues concerning the abnormal deodorization facilities of DDM Environment Resource Center were the deodorization of composting facilities, indoor air quality problems, and overall deodorization of facilities, especially the phenomenon of stopping while operating the RTO and the phenomenon of poor spray in the wet scrubber etc. As an alternative and improvement method for converting such abnormal operation facilities into normal operation facilities, It is proposed to remove the front filter of the upper part of the fermentation tank, and to install scrubbers, air and water separator, and roll filters for dust removal etc.

Machine Learning Approach for Pattern Analysis of Energy Consumption in Factory (머신러닝 기법을 활용한 공장 에너지 사용량 데이터 분석)

  • Sung, Jong Hoon;Cho, Yeong Sik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • 제8권4호
    • /
    • pp.87-92
    • /
    • 2019
  • This paper describes the pattern analysis for data of the factory energy consumption by using machine learning method. While usual statistical methods or approaches require specific equations to represent the physical characteristics of the plant, machine learning based approach uses historical data and calculate the result effectively. Although rule-based approach calculates energy usage with the physical equations, it is hard to identify the exact equations that represent the factory's characteristics and hidden variables affecting the results. Whereas the machine learning approach is relatively useful to find the relations quickly between the data. The factory has several components directly affecting to the electricity consumption which are machines, light, computers and indoor systems like HVAC (heating, ventilation and air conditioning). The energy loads from those components are generated in real-time and these data can be shown in time-series. The various sensors were installed in the factory to construct the database by collecting the energy usage data from the components. After preliminary statistical analysis for data mining, time-series clustering techniques are applied to extract the energy load pattern. This research can attributes to develop Factory Energy Management System (FEMS).

Development of noise mapping system to manage the interior room noise of power plants (발전소의 실내 소음관리를 위한 소음 매핑 시스템 개발)

  • Kim, Young-Il;Kim, Won-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • 제40권1호
    • /
    • pp.92-98
    • /
    • 2021
  • The noise management in the interior of the power plant is difficult because the interior is large and the noise level varies greatly from location to location. Therefore, a noise visualization system capable of analyzing the noise distribution is required in order to effectively manage the interior noise. A noise mapping system was developed that can model the inside of the turbine room and create a noise map by measuring the noise level at selected points. And in order to increase the reliability of the model, the model was modified through a method of comparing the noise map and the actual noise measurement results. Facility abnormalities can be determined through regular analysis of noise maps, and a method of effectively managing the interior noise is presented by comparing and analyzing the frequencies and levels of the current and previous noise at a specific point. By using the mapping system, it is possible to establish noise countermeasures that can improve the working environment, check the machine for abnormalities, and increase the reliability of the facility through preventive maintenance.

A Study on the Quality and Safety of Strawberries and Lettuce Using MA Packaging Container (MA포장용기를 이용한 딸기 및 상추의 품질 안전성에 관한 연구)

  • Hong, Sang-Tai
    • Journal of the Korea Safety Management & Science
    • /
    • 제22권4호
    • /
    • pp.9-15
    • /
    • 2020
  • As of 2018, total yield of lettuce and strawberry amounted to 93,543 tons (representing 1.0 percent) and 183,639 tons (2.0 percent), respectively, among total yields worth 9,185,889 tons in South Korea. Lettuce is affected by a combination of numerous elements such as varieties, cultivation methods and pests during each growth phase (Lee et al., 1999). It is mainly cultivated in spring and fall. Especially due to respiration rate after harvest leading to reduced quality and poor storage, maintaining annual supply is unavailable (Jang et al., 2018). With the distribution of new varieties, forcing culture and indoor insulated facilities for plant cultivation during winter, strawberries are produced every year except for late summer and early fall. Due to active respiration, transpiration, soft flesh and high water content, the fruit is vulnerable to go bad and got rotten compared to other fruits. Furthermore, it is difficult to maintain freshness due to the possibility of softening, discoloration and fungi (Lee et al., 2012). In this regard, developing improved storage and package techniques is needed to ensure maintaining quality and safety even just two to three days after harvest. In order to ensure improved quality and safety of strawberries and lettuce after harvest, the present study applied a modified atmosphere packaging (MAP) technology (Mostofi et. al., 2008). Going forward, it compared the quality and safety of the two products while being stored in a way that put them in an MAP-applied container and a plastic container at room temperature and 4 degree Celsius.

A Topic Analysis of Fine Particle Matter by Using Newspaper Articles (신문기사를 이용한 미세먼지 이슈의 토픽 분석)

  • Yang, Ji-Yeon
    • The Journal of the Korea Contents Association
    • /
    • 제22권6호
    • /
    • pp.1-14
    • /
    • 2022
  • This study aims to identify topics in newspaper articles related to fine particle matter and to investigate the characteristics and time series trend of each topic. Related national newspaper articles during 1990 and 2021 were collected from Bigkinds. A total of 18 topics have been discovered using LDA, and 11 clusters deduced from clustering. Hot topics include related products/residence, overseas cause(China), power plant as a domestic cause, nationwide emergency reduction measures, international cooperation, political issues, current situation & countermeasure in other countries, and consumption patterns. Cold topics include the concentration standard and indoor air quality improvement. These findings would be useful in inferring the political direction and strategies. In particular, the consumer protection policy should be expanded as the related market is growing. It will also be necessary to pursue policies that will promote public safety and health, and that will enhance public consensus and international cooperation.

Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility (다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제48권5호
    • /
    • pp.80-88
    • /
    • 2020
  • With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.

Development of A Three-Variable Canopy Photosynthetic Rate Model of Romaine Lettuce (Lactuca sativa L.) Grown in Plant Factory Modules Using Light Intensity, Temperature, and Growth Stage (광도, 온도, 생육 시기에 따른 식물공장 모듈 재배 로메인 상추의 3 변수 군락 광합성 모델 개발)

  • Jung, Dae Ho;Yoon, Hyo In;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • 제26권4호
    • /
    • pp.268-275
    • /
    • 2017
  • The photosynthetic rates of crops depend on growth environment factors, such as light intensity and temperature, and their photosynthetic efficiencies vary with growth stage. The objective of this study was to compare two different models expressing canopy photosynthetic rates of romaine lettuce (Lactuca sativa L., cv. Asia Heuk romaine) using three variables of light intensity, temperature, and growth stage. The canopy photosynthetic rates of the plants were measured 4, 7, 14, 21, and 28 days after transplanting at closed acrylic chambers ($1.0{\times}0.8{\times}0.5m$) using light-emitting diodes, in which indoor temperature and light intensity were designed to change from 19 to $28^{\circ}C$ and 50 to $500{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. At an initial $CO_2$ concentration of $2,000{\mu}mol{\cdot}mol^{-1}$, the canopy photosynthetic rate began to be calculated with $CO_2$ decrement over time. A simple multiplication model expressed by simply multiplying three single-variable models and a modified rectangular hyperbola model were compared. The modified rectangular hyperbola model additionally included photochemical efficiency, carboxylation conductance, and dark respiration which vary with temperature and growth stage. In validation, $R^2$ value was 0.849 in the simple multiplication model, while it increased to 0.861 in the modified rectangular hyperbola model. It was found that the modified rectangular hyperbola model was more suitable than the simple multiplication model in expressing the canopy photosynthetic rates affected by environmental factors (light Intensity and temperature) and growth factor (growth stage) in plant factory modules.

Prioritization of Species Selection Criteria for Urban Fine Dust Reduction Planting (도시 미세먼지 저감 식재를 위한 수종 선정 기준의 우선순위 도출)

  • Cho, Dong-Gil
    • Korean Journal of Environment and Ecology
    • /
    • 제33권4호
    • /
    • pp.472-480
    • /
    • 2019
  • Selection of the plant material for planting to reduce fine dust should comprehensively consider the visual characteristics, such as the shape and texture of the plant leaves and form of bark, which affect the adsorption function of the plant. However, previous studies on reduction of fine dust through plants have focused on the absorption function rather than the adsorption function of plants and on foliage plants, which are indoor plants, rather than the outdoor plants. In particular, the criterion for selection of fine dust reduction species is not specific, so research on the selection criteria for plant materials for fine dust reduction in urban areas is needed. The purpose of this study is to identify the priorities of eight indicators that affect the fine dust reduction by using the fuzzy multi-criteria decision-making model (MCDM) and establish the tree selection criteria for the urban planting to reduce fine dust. For the purpose, we conducted a questionnaire survey of those who majored in fine dust-related academic fields and those with experience of researching fine dust. A result of the survey showed that the area of leaf and the tree species received the highest score as the factors that affect the fine dust reduction. They were followed by the surface roughness of leaves, tree height, growth rate, complexity of leaves, edge shape of leaves, and bark feature in that order. When selecting the species that have leaves with the coarse surface, it is better to select the trees with wooly, glossy, and waxy layers on the leaves. When considering the shape of the leaves, it is better to select the two-type or three-type leaves and palm-shaped leaves than the single-type leaves and to select the serrated leaves than the smooth edged leaves to increase the surface area for adsorbing fine dust in the air on the surface of the leaves. When considering the characteristics of the bark, it is better to select trees that have cork layers or show or are likely to show the bark loosening or cracks than to select those with lenticel or patterned barks. This study is significant in that it presents the priorities of the selection criteria of plant material based on the visual characteristics that affect the adsorption of fine dust for the planning of planting to reduce fine dust in the urban area. The results of this study can be used as basic data for the selection of trees for plantation planning in the urban area.

Identification and Phylogenetic Analysis of Culturable Bacteria in the Bioareosol from Several Environments (환경 유형에 따른 바이오에어로졸 중 배양성 세균 동정 및 계통분석)

  • Lee, Siwon;Chung, Hyen-Mi;Park, Su Jeong;Choe, Byeol;Kim, Ji Hye;Lee, Bo-Ram;Joo, Youn-Lee;Kwon, Oh Sang;Jheong, Weon Hwa
    • Microbiology and Biotechnology Letters
    • /
    • 제43권2호
    • /
    • pp.142-149
    • /
    • 2015
  • Bioaerosols are comprised of particles 0.02-100 μm in size that originate in natural and artificial environments, and as a result of human activities. They consist of microorganisms including viruses, bacteria, fungi, and protozoa; fungal spores; microbial toxins; pollen; plant or animal material; expectorated liquid from humans; and glucans (peptidoglycan and β-glucan). Bioaerosols can cause respiratory and other diseases in humans and animals. In this study, bioaerosol samples acquired from agricultural sources, livestock, a sewage treatment plant, a beach, and a pristine area were analyzed to identify and phylogenetically characterize culturable microorganisms. The isolated bacteria exhibited regional differences, with different species dominating. However, Bacillus cereus was isolated in all samples, with a total of 31 strains isolated from all areas, and Acinetobacter baumannii was isolated from an indoor poultry farm. In addition, bacteria determined to be of novel genus or species of the genera Domibacillus, Chryceobacterium, Nocardioides and family Comamonadaceae were isolated from the agricultural, livestock and beach environments.