• Title/Summary/Keyword: indol

Search Result 69, Processing Time 0.021 seconds

Inhibitory Effect of Main Pine Needle Extracts on the Chemically Induced Mutagenicity (주요 솔잎 추출물의 돌연변이 억제효과)

  • Kim, Eun-Jeong;Jung, Sung-Won;Choi, Keun-Pyo;Ham, Seung-Shi;Kang, Ha-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.450-455
    • /
    • 1998
  • Pine has been known as a traditional medicinal plant and as showing a physically beneficial function to a human being. Therefore, this study was performed to investigate the physiological activities of main pine neddles. Ethanol extracts from pinus needles did net exhibit any mutagenicity. On the contrary, inhibitory effects of ethanol extract were observed on mutagenicity induced by N-methyl-N'-nitro-N-nitrosoguanidine(MNNG), 4-nitroquinoline-1-oxide (4NQO), 3-amino-1,4-dimethyl-5H-pyrido-(4,3-b)indol (Trp-P-1) and benzo(a)pyrene $(B({\alpha})P)$ using Salmonella typhimurium reversion assay. On direct-acting mutagen (MNNG, 4NQO) and indirect-acting mutagen (Trp-P-1, $(B({\alpha})P)$, we observed higher inhibitory effect. Stepwise fractionation of the ethanol extract was done by using ether, chloroform, ethyl acetate, butanol and water to obtain effective fraction. Among them, water fractions $(100\;{\mu}g/plate)$ of Pinus thunbergii, Pinus rigida, Pinus densiflora and Pinus koraiensis showed high inhibition of 91.65%, 94.7%, 84.22% and 79.02%, respectively, on the mutagenicity of MNNG in Salmonella typhimurium TA100.

  • PDF

Detection of Bifidobacteria by ${\alpha}-Galactosidase$ activity (${\alpha}-Galactosidase$의 활력차이에 의한 Bifidobacteria의 선별)

  • Min, Hae-Ki;Lee, See-Kyung;Kang, Kook-Hee
    • Applied Biological Chemistry
    • /
    • v.36 no.3
    • /
    • pp.191-196
    • /
    • 1993
  • This method using the synthesis substrate of $5-bromo-4-chloro-3-indolyl-{\alpha}-galactoside\;(X-{\alpha}-Gal)$ was examined for the differential enumeration of Bifidobacteria and lactic acid-producing bacteria. Bifidobacteria possess a high level of ${\alpha}-galactosidase$ activity. Bifidobacterium longum KCTC 3215 exhibited the highest ${\alpha}-galactosidase$ specific activity (8.57 units/mg protein). Determination of ${\alpha}-galactosidase$ activity using the PNPG procedure showed that Lactobacillus, Streptococcus, Pediococcus, and Leuconostoc strain had lower ${\alpha}-galactosidase$ activity as compared to Bifidobacteria. The $X-{\alpha}-Gal$ based medium is useful to identify Bifidobacteria among lactic acid-producing bacteria since the enzyme action of ${\alpha}-galactosidase$ spills $X-{\alpha}-Gal$ substrate and releases indol which impacts a blue color to Bifidobacterial colonies on agar plates. All strains of Bifidobacteria appeared as blue colonies on MRS agar medium supplemented with $100\;{\mu}M\;X-{\alpha}-Gal$ while colonies of other lactic acid-producing bacteria appeared white or light blue.

  • PDF

DNA Structural Perturbation Induced by the CPI-Derived DNA Interstrand Cross-linker : Molecular Mechanisms for the Sequence Specific Recognition

  • Park, Hyun-Ju
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.455-465
    • /
    • 2001
  • The highly potent cytotoxic DNA-DNA cross-linker consists of two cyclopropa[c]pyrrolo[3,4-3]indol-4(5H)-ones insoles [(+)-CPI-I] joined by a bisamido pyrrole (abbreviated to "Pyrrole"). The Pyrrole is a synthetic analog of Bizelesin, which is currently in phase II clinical trials due to its excellent in vivo antitumor activity. The Pyrrole has 10 times more potent cytotoxicity than Bizelesin and mostly form DNA-DNA interstrand cross-links through the N3 of adenines spaced 7 bp apart. The Pyrrole requires a centrally positioned GC base pair for high cross-linking reactivity (i.e., $5^1$-T$AT_2$A*-$3^1$), while Bizelesin prefers purely AT-rich sequences (i.e., $5^1$-T$AT_4$A*-$3^1$, where /(equation omitted) represents the cross-strand adenine alkylation and A* represents an adenine alkylation) (Park et al., 1996). In this study, the high-field $^1$H-NMR and rMD studies are conducted on the 1 1-mer DNA duplex adduct of the Pyrrole where the 5′(equation omitted)TAGTTA*-3′sequence is cross-linked by the drug. A severe structural perturbation is observed in the intervening sequences of cross-linking site, while a normal B-DNA structure is maintained in the region next to the drug-modified adenines. Based upon these observations, we propose that the interplay between the bisamido pyrrole unit of the drug and central C/C base pair (hydrogen-bonding interactions) is involved in the process of cross-linking reaction, and sequence specificity is the outcome of those interactions. This study suggests a mechanism for the sequence specific cross-linking reaction of the Pyrrole, and provides a further insight to develop new DNA sequence selective and distortive cross-linking agents.

  • PDF

Effect of Quercetin on Auxin-induced Ethylene Production in Barley Coleoptiles (Quercetin이 보리 자엽초에서 옥신에 의해 유도되는 에틸렌 생성에 미치는 영향)

  • 이준승
    • Journal of Plant Biology
    • /
    • v.35 no.4
    • /
    • pp.409-414
    • /
    • 1992
  • Effect of quercetin, a kind of natural plant flavonoids, on auxin-induced ethylene production in barley coleoptiles was studied. Auxin-induced ethylene production was apparently stimulated by quercetin. This stimulatory effect of quercetin appeared after 4 h of incubation period. Ethylene production was stimulated 200% over the control after 8 h of incubation by $3{\times}10^{-5}\;M$ quercetin. The quercetin effect was most prominent at $10^{-4}\;M$ of IAA. Ethylene production induced by the synthetic auxin, 2,4-D and NAA, was not significantly affected by quercetin. Also ACC-based ethylene production was unaffected by the flavonoid. In an effort to elucidate mechanisms of quercetin action on auxin-induced ethylene production, the effect of quercetin on 1M metabolism was studied. Data obtained from these experiments indicate that quercetin treatment resulted in about 90% inhibition of IAA oxidase activity. IAA ($3{\times}10^{-5}\;M$) conjugation was found to be not affected by quercetin. This results suggest that the stimulatory effect of quercetin on auxin-induced ethylene production may be due to the fact that quercetin inhibits 1M oxidase activity, thus increasing the free IAA level.

  • PDF

Effect of plant growth regulators and antioxidants on in vitro plant regeneration and callus induction from leaf explants of purple passion fruit (Passiflora edulis Sims)

  • Huh, Yoon Sun;Lee, Joung Kwan;Nam, Sang Young
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.335-342
    • /
    • 2017
  • Purple passion fruit (Passiflora edulis Sims) is one of the introduced tropical plants, an increasing interest has arisen due to its distinctive taste and attractive flavor. It is expected that passion fruit production and planted area will increase gradually in the years ahead because of high profitability and consumer's demands of healthful ingredients. So we tried to investigate the effect of plant growth regulators and antioxidants on in vitro plant regeneration and callus induction from leaf explants of passion fruit for an establishment of optimal mass propagation system. Young leaf explants of purple passion fruit were cultured in Murashige and Skoog (MS) medium containing different growth regulators and antioxidant additives to induce the shoot organogenesis. After 8 weeks, the highest embryogenic callus formation rate was obtained in MS medium supplemented with $1mg{\cdot}L^{-1}$ 6-benzylaminopurine (BAP) and $2mg{\cdot}L^{-1}$ 2,4-dichlorophenoxyacetic acid (2,4-D), furthermore, the shoot development via organogenesis was also observed. Silver nitrate ($AgNO_3$), which was added into the medium to minimize the adverse effects of leached phenolics, was effective for reduction of medium browning and sudden explant death. In the medium supplemented with $1mg{\cdot}L^{-1}$ BAP and $1mg{\cdot}L^{-1}$ gibberellic acid ($GA_3$), shoots were most vigorously regenerated and elongated. Most shoots rooted successfully in half strength medium with $1mg{\cdot}L^{-1}$ indol-3 acetic acid (IAA), and more than 90% of plantlets survived after 4-month acclimatization period.

Antimutagenic Effects of the Edible Mountain Herb Juices Against Trp-P-1 and 2-AF (Trp-P-1과 2-AF에 대한 산채류 생즙의 항돌연변이 효과)

  • 한규석;함승시;정의호;이해금
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.4
    • /
    • pp.161-168
    • /
    • 1992
  • On the mutagenicity induced by 3-amino-l,4-dimethyl-5-H-pyrido[4,3-b]indol (Trp-P-1) and 2-aminotluorene (2-AF), the antimutagenic effects of edible muntain herb juices were examined by the Ames assay using Salmonella typhimurium TA98 and TA100. Juices prepared from aralia bud, small water dropwort, mugwort, roots of belltlower and sedum didn't have mutagenicity. Most of sample juices showed the antimutagenicity. Especially, juices prepared from aralia bud, small water dropwort and mugwort were found to possess strong antimutagenic effects. Sedum was moderatly effective and root of belltlower had little effect on mutagenicity caused by Trp-P1 and 2-AF. The experimental results with TA98 were similar to those with TA100 in the antimutagenicity test of edible mountain herb juices. In this study, antimutagenicity on Trp-P-1 was more effective than that on 2-AF.

  • PDF

Antimutagenic Effects of Browning Products Reacted with Polyphenol Oxidase Extracted from Apple by Using SOS Chromotest (SOS Chromotest에 의한 사과의 효소갈변반응 생성물의 항돌연변이 효과)

  • Baik, Chang-Weon;Ham, Seung-Shi
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.618-624
    • /
    • 1990
  • The antimutagenic effects of apple enzymatic browning reaction products(AEBRP) which resulted from the reaction of catechol, hydroquinone, homocatechol, hydroxyhydroquinone and pyrogallol with polyphenol oxidase extracted from apple(Jona gold) were investigated. Test strain used in SOS spot test and SOS chromotest was E. coli PQ 37/plasmid pKM 101. In SOS spot test, all of five AEBRPs showed strong antimutagenic effects on mytomycin C(MMC), 4-nitroquinoline-1-oxide(4NQO), N-me-thyl-N'-nitro-N-nitrosoguanidlne(MNNG) as increasing concentrations of AEBRP solution. In SOS chromotest, most of AEBRPs also showed strong antimutagenic effects on MMC, MNNG, 4NQO and 3-amino-1,4-dimethyl-5H-pyrido(4,3-b)indole (Trp-P-1), as increasing concentration of AEBRP solution.

  • PDF

STUDIES ON THE LEVELS OF INDOLE-3-ACETIC ACID (IAA) AND INDOLE-3-ACETYL-L-ASPARATE(IAAsp)IN RELATION TO SOMATIC EMBRYOGENESIS OF CALLI DERIVED FROM GINSENG (PANAX GINSENG C.A. MEYER) ROOTS (인삼근 캘루스의 체세포 배아 발생과 관련한 IAA 및 IAAsp의 수준에 관한 연구)

  • Chen Kai-hsien;Hsing Yue-ie;Chen Shuh-chun;Chang Wei-chin
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.45-48
    • /
    • 1984
  • Ion-pair reverse phase HPLC techniques were used to compare the contents of IAA and IAAsp in the embryogenic and non-embryogenic calli derived from ginseng (Panax ginseng C.A. Meyer) root tissues. The contents of IAA and IAAsp of the embryogenic callus were much higher (7 to 18 X respectively) than those of non-embryogenic callus. There is a distinct fluorescent peak of an unknown component in the HPLC profile of the extract for indolic compounds from non-embryo-genic callus. This distinct difference may be employed as a promising parameter to screen the culture pieces for obtaining the calli with high potential for embryoid formation.

  • PDF

Antimutagenic and Antigenotoxic Effects of Ligularia fischeri Extracts (곰취 추출물의 항돌연변이성 및 유전독성억제효과)

  • 함승시;이상영;오덕환;정성원;김상헌;정차권;강일준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.4
    • /
    • pp.745-750
    • /
    • 1998
  • The antimutagenic and antigenotoxic effects of ethanol, methanol, water and non-heating ethanol extract of Ligularia fischeri were investigated using Ames test and micronucleus test. Four solvent extracts by themseleves did not induce mutagenesis. The four extract of 200㎍/plate showed approximately 84.7%, 77.1%, 72.5% and 71% inhibitory effect on the mutagenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) and 67.9%, 66.8%, 64.6% and 56% inhibition on the mutagenesis by 4-nitroquinoline-1-oxide(4NQO) against TA100 strain, whereas 70.2%, 60.9%, 61.9% and 52.8% inhibitions were observed on the mutagenesis induced by 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indol(Trp-P-1) in the presence of 200㎍/plate. TA100 strain was more sensitive than TA98 strain by four kinds of extracts on antimutagenesis. The effects of Ligularia fischeri extracts on the frequencies of micronucleated poly chromatic erythrocytes(MNPECs) induced by MNNG were investigated in the bone marrow. Ten, 20, 40 and 80mg g/kg of each extract were administered to animals immediately after injection of MNNG and the exposure time was 36 hours. Inhibitory effects of Ligularia fischeri ethanol extracts were 12%, 35.3%, 58.8%, and 57%, in the presence of 20, 40, 60 and 80mg/kg, respectively whereas methanol extracts showed 15.5%, 32.7%, 50.8%, and 57.9% inhibitory effects, respectively. Both extracts showed enhanced antimutagenic and antigenotoxic effects. These results showed a good correlation between antimutagenic effects in in vitro and in in vitro assay.

  • PDF

Structure-Activity Relationship and Functional Evaluation of Cannabinoid Type-1 Receptor

  • Shujie Wang;Xinru Tian;Suresh Paudel;Sungho Ghil;Choon-Gon Jang;Kyeong-Man Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.442-450
    • /
    • 2024
  • The type-1 cannabinoid receptor (CB1R) is a potential therapeutic target in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Owing to their structural diversity, it is not easy to derive general structure-activity relationships (SARs) for CB1R ligands. In this study, CB1R ligands were classified into six structural families, and the corresponding SAR was determined for their affinities for CB1R. In addition, we determined their functional activities for the activation of extracellular signal-regulated kinases (ERKs). Among derivatives of indol-3-yl-methanone, the highest ligand affinity was observed when a pentyl and a naphthalenyl group were attached to the N1 position of the indole ring and the carbon site of the methanone moiety, respectively. In the case of adamantane indazole-3-carboxamide derivatives, the presence of fluorine in the pentyl group, the substituent at the N1 position of the indazole ring, strongly increased the affinity for CB1R. For (naphthalen-1-yl) methanone derivatives, the presence of 4-alkoxynaphthalene in the methanone moiety was more beneficial for the affinity to CB1R than that of a heterocyclic ring. The functional activities of the tested compounds, evaluated through ERK assay, were correlated with their affinity for CB1R, suggesting their agonistic nature. In conclusion, this study provides valuable insight for designing novel ligands for CB1R, which can be used to control psychiatric disorders and drug abuse.