• 제목/요약/키워드: individual dose

검색결과 344건 처리시간 0.024초

원자력 사고후 장기피폭에 대한 개입을 위한 피폭선량 금전가 산정의 개선된 방법론 (An Improved Methodology of Monetary Values of the Unit Collective Dose for Intervention Against Long-Term Exposure Following a Nuclear Accident)

  • 황원태;김은한;서경석;최영길;한문희
    • Journal of Radiation Protection and Research
    • /
    • 제27권2호
    • /
    • pp.77-80
    • /
    • 2002
  • 원자력시설의 정상 운영시 일반인에 대한 단위 집단선량의 금전가 (피폭선량 금전가) 모델을 기본으로, 사고후 만성피폭에 대해 보다 적용 타당한 모델을 제안하였다. 아울러 우리나라 경제 환경자료를 사용하여 제안된 모델에 근거하여 평가한 피폭선량 금전가를 정상 운영시로부터 유도된 값을 수정없이 그대로 사고후 만성 피폭에 적용한 값과 비교, 분석하였다. 제안된 방법론에 근거할 경우 집단선량은 같다하더라도 피폭받은 집단내 개인선량의 불균일성 차이에 따라 피폭선량 금전가는 상당히 다르게 나타났다. 또한 할인율도 피폭선량 금전가 결정에 있어서 중요한 요소로 작용하였다.

고준위 방사성패기물 처분장 생태계 모델링을 위한 ACBIO개발 (Biosphere Modeling for Dose Assessment of HLW Repository: Development of ACBIO)

  • 이연명;황용수
    • 방사성폐기물학회지
    • /
    • 제6권2호
    • /
    • pp.73-100
    • /
    • 2008
  • 고준위 방사성폐기물 처분장으로부터 유출된 핵종에 의한 선량률을 계산하기 위한 생태계평가 코드 ACBIO를 일반적인 구획모델링도구인 AMBER를 이용하여 BIOMASS 방법론을 적용하여 개발하였다. ACBIO의 유용성을 보이고, 구획의 변화나 일부 파라미터값의 변화에 따른 구획 내 농도와 방사능, 그리고 구획간의 플럭스의 민감도도 검토하였다. 지하매질-생태계 경계(GBI)를 통해 넘어오는 핵종의 유출플럭스에 따른 선량환산인자를 각 핵종별로 구하여 결정집단내 개인의 최대피폭선량율을 선량환산인자로 얻는 계산을 수행하였다. 또한 생태계 요소의 구획모델링이나 가능한 피폭집단의 설정, 그리고 GBI의 인지 등이 생태계평가에 중요한 요소가 되는 것을 확인하였다.

  • PDF

Individual-Based Models Applied to Species Abundance Patterns in Benthic Macroinvertebrate Communities in Streams in Response to Pollution

  • Cho, Woon-Seok;Nguyen, Tuyen Van;Chon, Tae-Soo
    • 생태와환경
    • /
    • 제45권4호
    • /
    • pp.420-443
    • /
    • 2012
  • An Individual-Based Model (IBM) was developed by employing natural and toxic survival rates of individuals to elucidate the community responses of benthic macroin-vertebrates to anthropogenic disturbance in the streams. Experimental models (dose-response and relative sensitivity) and mathematical models (power law and negative exponential distribution) were applied to determinate the individual survival rates due to acute toxicity in stressful conditions. A power law was additionally used to present the natural survival rate. Life events, covering movement, exposure to contaminants, death and reproduction, were simulated in the IBM at the individual level in small (1 m) and short (1 week) scales to produce species abundance distributions (SADs) at the community level in large (5 km) and long (1~2 years) scales. Consequently, the SADs, such as geometric series, log-series, and log-normal distribution, were accordingly observed at severely (Biological Monitoring Working Party (BMWP<10), intermediately (BMWP<40) and weakly (BMWP${\geq}50$) polluted sites. The results from a power law and negative exponential distribution were suitably fitted to the field data across the different levels of pollution, according to the Kolmogorov-Smirnov test. The IBMs incorporating natural and toxic survival rates in individuals were useful for presenting community responses to disturbances and could be utilized as an integrative tool to elucidate community establishment processes in benthic macroin-vertebrates in the streams.

Microcomputer를 이용한 근접조사 장치의 선량분포 계산 (Calculation of Dobe Distributions in Brachytherapy by Personal Microcomputer)

  • 추성실;박창윤
    • Radiation Oncology Journal
    • /
    • 제2권1호
    • /
    • pp.129-137
    • /
    • 1984
  • In brachytherapy, it is important to determine the positions of the radiation sources which are inserted into a patient and to estimate the dose resulting from the treatment. Calculation of the dose distribution throughout an implant is so laborious that it is rarely done by manual methods except for model cases. It is possible to calculate isodose distributions and tumor doses for individual patients by the use of a microcomputer. In this program, the dose rate and dose distributions are calculated by numerical integration of point source and the localization of radiation sources are obtained from two radiographs at right angles taken by a simulator developed for the treatment planning. By using microcomputer for brachytherapy, we obtained the result as following 1. Dose calculation and irradiation time for tumor could be calculated under one or five seconds after input data. 2. It was same value under$\pm2\%$ error between dose calculation by computer program and measurement dose. 3. It took about five minutes to reconstruct completely dose distribution for intracavitary irradiation. 4. Calculating by computer made remarkly reduction of dose errors compared with Quimby's calculation in interstitial radiation implantation. 5. It could calculate the biological isoffect dose for high and low dose rate activities.

  • PDF

Radiation Exposure from Nuclear Power Plants in Korea: 2011-2015

  • Lim, Young Khi
    • Journal of Radiation Protection and Research
    • /
    • 제42권4호
    • /
    • pp.222-228
    • /
    • 2017
  • Background: On June 18, 2017, Korea's first commercial nuclear reactor, the Kori Nuclear Power Plant No. 1, was permanently suspended, and the capacity of nuclear power generation facilities will be adjusted according to the governments denuclearization policy. In these circumstances, it is necessary to assess the quality of radiation safety management in nuclear power plants in Korea by evaluating the radiation dose associated with them. Materials and Methods: The average annual radiation dose per unit, the annual radiation dose per person, and the annual dose distribution were analyzed using the radiation dose database of nuclear reactors for the last 5 years. The results of our analysis were compared to the specifications of the Nuclear Safety Act and Medical Law in Korea. Results and Discussion: The annual average per unit radiation dose of global major nuclear power generation was 720 man-mSv, while that of Korea's nuclear power plants was 374 manmSv. No workers exceeded 50 mSv per year or 100 mSv in 5 years. The individual radiation dose according to occupational exposure was 0.59 mSv for nuclear workers, 1.77 mSv for non-destructive workers, and 0.8 mSv for diagnostic radiologists. Conclusion: The radiation safety management of nuclear power plants in Korea has achieved the best outcomes worldwide, which is considered to be the result of the as-low-as-reasonably-achievable (ALARA) approach and strict radiation safety management. Moreover, the occupational exposures were also very low.

저선량 방사선 노출과 건강 영향에 대한 역학적 고찰 (Epidemiology of Low-Dose Ionizing Radiation Exposure and Health Effects)

  • 이원진
    • 한국환경보건학회지
    • /
    • 제49권1호
    • /
    • pp.1-10
    • /
    • 2023
  • Low-dose radiation exposure has received considerable attention because it reflects the general public's type and level of exposure. Still, controversy remains due to the relatively unclear results and uncertainty in risk estimation compared to high-dose radiation. However, recent epidemiological studies report direct evidence of health effects for various types of low-dose radiation exposure. In particular, international nuclear workers' studies, CT exposure studies, and children's cancer studies on natural radiation showed significantly increased cancer risk among the study populations despite their low-dose radiation exposure. These studies showed similar results even when the cumulative radiation dose was limited to an exposure group of less than 100 mGy, demonstrating that the observed excess risk was not affected by high exposure. A linear dose-response relationship between radiation exposure and cancer incidence has been observed, even at the low-dose interval. These recent epidemiological studies include relatively large populations, and findings are broadly consistent with previous studies on Japanese atomic bomb survivors. However, the health effects of low-dose radiation are assumed to be small compared to the risks that may arise from other lifestyle factors; therefore, the benefits of radiation use should be considered at the individual level through a balanced interpretation. Further low-dose radiation studies are essential to accurately determining the benefits and risks of radiation.

A Study for Optimal Dose Planning in Stereotactic Radiosurgery

  • Suh, Tae-suk
    • 한국의학물리학회지:의학물리
    • /
    • 제1권1호
    • /
    • pp.23-29
    • /
    • 1990
  • In order to explane the stereotactic procedure, the three steps of the procedure (target localization, dose planning, and radiation treatment) must be examined separately. The ultimate accuracy of the full procedure is dependent on each of these steps and on the consistancy of the approach The concern in this article was about dose planning, which is a important factor to the success of radiation treatment. The major factor in dose planning is a dosimetry system to evaluate the dose delivered to the target and normal tissues in the patient, while it generates an optimal dose distribution that will satisfy a set of clinical criteria for the patient. A three-dimensional treatment planning program is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. The major problems and possible modelings about 3-D factors and optimization technique were discussed to simplify and solve the problems associatied with 3-D optimization, with relative ease and efficiency. These modification can simplify the optimization problem while saving time, and can be used to develop reference dose planning system to prepare standard guideline for the selection of optimum beam parameters, such as the target position, collimator size, arc spacing, the variation in arc length and weight. The method yields good results which can then be simulated and tailored to the individual case. The procedure needed for dose planning in stereotactic radiosurgery is shown in figure 1.

  • PDF

항공기 객실승무원의 우주방사선 노출에 관한 고찰 (Literature Review on Cosmic Radiation Exposure to Air Craft Cabin Crew)

  • 장여진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권6호
    • /
    • pp.643-649
    • /
    • 2018
  • Recently, together with advancement of domestic aviation industry, overseas tourists using planes have been soared. This study aimed to investigate the risk of diseases for the passengers and flight attendants from the exposed cosmic radiation during the flight by domestic and international literature reviews, as follows. Airliners should develop the program to measure the actual radiation dose and prepare the portable devices for radiation measurement in flight to lower the accumulated dose of cosmic radiation by the attendants. Regulation should be prepared to check the exposed dose during the flight for the passengers by announcement of individual exposed radiation dose which has been provided only to the flight attendants. Passengers and flight attendants should recognize they are exposed to excessive cosmic radiation during the flight and civilians should be protected by the cosmic radiation when they use the flights, which should be prepared by the regulations.

근무형태 및 피폭선량에 따른 PET/CT실의 운영 효율성 평가 (Operation Efficiency Estimation of PET/CT Center by Work Form and Exposure Dose)

  • 권오진;정서희;백승찬;김경호
    • 핵의학기술
    • /
    • 제13권1호
    • /
    • pp.93-97
    • /
    • 2009
  • 2006년~2008년 2사분기까지의 2.5년간의 환자 건수는 14,674건이었으며, $^{18}F$-FDG 평균 주사량은 461.5 MBq 였다. 2.5년간 순환근무는 3회 이루어졌고, 10명의 방사선사 중 PET과 Gamma 영역별 1인을 제외한 8명의 순환근무가 시행되었다. 추가로 2008년 3인의 신입인력이 야간에 투입되어 이에 대한 평가도 이루어졌다. 방사선사의 근무연한은 15년 이상이 2인, 10~15년이 3인, 5~10년이 1인, 5년 미만이 3인이었다. 이들의 개인별 피폭선량은 먼저 PET실에 근무를 하고 있을 때가 Gamma 영역에 근무하고 있을 때 보다 더 높게 나왔다. 가장 큰 원인으로는 일일 처리 건수 면에서 PET과 Gamma영역의 차이가 거의 없는 상태에서 $^{99m}Tc$보다는 상대적으로 에너지가 높은 $^{18}F$-FDG를 사용하는데 있다고 본다. 특히 개인별 피폭선량도 근무연한에 따른 분기별 평가에서 서로 다르게 나타났다. 또한 순환근무 초기 1개월째보다는 업무의 연속성을 익힌 3개월째에 더 낮은 피폭선량을 보여 주고 있다. 이는 PET 실의 근무연한이 길수록 업무의 숙달도가 증가하여 개인별 피폭선량은 감소하는 것으로 보인다. 예약실에 근무하는 간호사의 피폭선량은 $^{18}F$-FDG 주사 후 짧은 시간에 환자와의 접촉이 이루어지고 있어 그리 큰 문제점을 보이지는 않았다. 그러나 임신 가능성이 있는 간호사일 경우는 이를 재고해 보아야할 필요가 있다. 순환 근무를 통한 장시간 PET/CT실을 벗어난 상황이 될 경우 대부분의 근무자가 초기 1개월에서 업무의 연속성 결여 및 개인별 피폭선량 증가라는 위험성을 내포하였다. PET/CT 환자의 증가에 따른 PET/CT실 전체의 과도한 피폭을 분산하기 위한 순환 근무제의 도입이 또 다른 문제점을 갖고 있음을 알 수 있다.5,6) 이를 해결하기 위해서는 근무자의 업무재교육과 순환 및 고정 근무제의 적절한 병행을 시행할 필요가 있다고 본다. 또한 고정 근무자는 순환 근무 인력들의 이런 문제점을 해결하기 위해 업무영역에서 표준화된 업무지침서 등을 만들어야 한다.

  • PDF

개심술시 Activated Clotting Time 을 이용한 Heparin 투여 조절에 관한 임상적 고찰 (Control of heparinization by activated clotting time during extracorporeal circulation)

  • 서충헌
    • Journal of Chest Surgery
    • /
    • 제16권3호
    • /
    • pp.281-288
    • /
    • 1983
  • Heparinization is an essential step in extracorporeal circulation for open heart surgery. But wide individual variation to heparin effect sometimes makes it difficult to anticoagulate safely or neutralize appropriately. Because the conventional set protocol of heparinization did not consider this individual variation, a new method of control of heparinization was proposed by Dr. Brian Bull in 1974. We compared the group in which a conventional set protocol was used [Control group] with the other in which a new protocol modified from that of Bull was used [ACT group], on the aspects of the dosages of heparin and protamine administered and postoperative bleeding. Our conventional protocol [Control group] consisted of: 1. Initial heparin was given at dose of 350U/Kg into the right atrium prior to bypass. 2. Additional heparin was given every hour during E.C.C., as much as a half of the Initial dose. 3. 600U of heparin was mixed into every 100ml. of priming solution. 4. The protamine dose was calculated by totalling the units of heparin given to the patient and giving 1 .8mg. of protamine per 100 units of heparin. ACT protocol [ACT group] consisted of: 1. Initial heparinization was same as that of conventional protocol. 2. ACT`s were checked before [A point] and 10 minutes after initial heparinization [B point]. With these 2 points, a dose response curve was drawn. 3. Heparin for the priming solution was same as in control group. 4. Every 30 minutes during E.C.C., ACT`s were checked with Hemochron [International Technidyne Corp.]. ACT between 450 and 600 seconds was regarded as safety zone. If ACT checked at a time was below 450 seconds, heparin dose was calculated on the dose-response curve to lengthen ACT to 480 seconds and was given into the oxygenator. 5. About 10 minutes before the term of E.C.C., ACT was checked to estimate the blood heparin level at the time. Then, protamine dose was calculated at dose of 1.Stag per 100 units of heparin. The calculated dose of protamine was mixed into 50 to lO0ml of 5% Dextrose Water and dripped intravenously during the period of 15 minutes. Compared these two groups mentioned above, results were obtained as follows: 1. Mean value of normal ACT checked with Hemochron on 30 preoperative patients was 124 seconds [range 95-145 sec.]. 2. Doses of heparin and protamine given to the patient were decreased in ACT group as much as 32.2% and 62.2% respectively. 3. Postoperative bleeding and transfusion were also decreased in ACT group in 60.5% and 67.1% respectively. 4. Our modified dose-response curve did not cause any problems in the control of heparinization. 5. Initial heparinization [Heparin 350U/Kg] was sufficient for the most patients until 60 minutes under extracorporeal circulation. 6. We used 1.5mg of protamine to neutralize 100 units of heparin. But smaller dose of protamine may be sufficient for appropriate neutralization.

  • PDF