• Title/Summary/Keyword: individual(AG Peg)

Search Result 2, Processing Time 0.015 seconds

CHEMICAL ABUNDANCES OF THE SYMBIOTIC NOVA AG PEGASI

  • Kim, Hyouk;Hyung, Siek
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.23-37
    • /
    • 2008
  • The high-resolution optical region spectroscopic data of the symbiotic nova AG Peg secured with the Hamilton Echelle Spectrograph at the Lick Observatory, have been analyzed along with the International Ultraviolet Explorer UV archive data. We measure about 700 line intensities in the wavelengths of 3859 to $9230{\AA}$ and identify about 300 lines. We construct pure photoionization models that represent the observed lines and the physical condition for this symbiotic nova. The spectral energy distribution of the ionizing radiation is adopted from stellar model atmospheres. Based on photoionization models, we derive the elemental abundances; C & N appear to be similar to be smaller than the Galactic planetary nebular value while O is enhanced. Our result is compared with the Contini (1997, 2003) who analyzed the UV region spectral data with the shock + ionization model. The Fe abundance appears to be enhanced than that of normal planetary nebulae, which suggests that AG Peg may have formed in the Galactic disk. The models indicate that the temperature of the central star which excite the shell gas may have fluctuated to an unexpected extent during the years 1998 - 2002.

THE FORMATION OF THE DOUBLE GAUSSIAN LINE PROFILES OF THE SYMBIOTIC STAR AG PEGASI

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • We analyze high dispersion emission lines of the symbiotic nova AG Pegasi, observed in 1998, 2001, and 2002. The Hα and Hβ lines show three components, two narrow and one underlying broad line components, but most other lines, such as HI, HeI, and HeII lines, show two blue- and red-shifted components only. A recent study by Lee & Hyung (2018) suggested that the double Gaussian lines emitted from a bipolar conical shell are likely to form Raman scattering lines observed in 1998. In this study, we show that the bipolar cone with an opening angle of 74°, which expands at a velocity of 70 km s-1 along the polar axis of the white dwarf, can accommodate the observed double line profiles in 1998, 2001, and 2002. We conclude that the emission zone of the bipolar conical shell, which formed along the bipolar axis of the white dwarf due to the collimation by the accretion disk, is responsible for the double Gaussian profiles.