• Title/Summary/Keyword: indirect branch target prediction

Search Result 3, Processing Time 0.018 seconds

Accurate Prediction of Polymorphic Indirect Branch Target (간접 분기의 타형태 타겟 주소의 정확한 예측)

  • 백경호;김은성
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.6
    • /
    • pp.1-11
    • /
    • 2004
  • Modern processors achieve high performance exploiting avaliable Instruction Level Parallelism(ILP) by using speculative technique such as branch prediction. Traditionally, branch direction can be predicted at very high accuracy by 2-level predictor, and branch target address is predicted by Branch Target Buffer(BTB). Except for indirect branch, each of the branch has the unique target, so its prediction is very accurate via BTB. But because indirect branch has dynamically polymorphic target, indirect branch target prediction is very difficult. In general, the technique of branch direction prediction is applied to indirect branch target prediction, and much better accuracy than traditional BTB is obtained for indirect branch. We present a new indirect branch target prediction scheme which combines a indirect branch instruction with its data dependent register of the instruction executed earlier than the branch. The result of SPEC benchmark simulation which are obtained on SimpleScalar simulator shows that the proposed predictor obtains the most perfect prediction accuracy than any other existing scheme.

Design of Accurate and Efficient Indirect Branch Predictor (정확하고 효율적인 간접 분기 예측기 설계)

  • Paik, Kyoung-Ho;Kim, Eun-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1083-1086
    • /
    • 2005
  • Modern superscalar processors exploit Instruction Level Parallelism to achieve high performance by speculative techniques such as branch prediction. The indirect branch target prediction is very difficult compared to the prediction of direct branch target and branch direction, since it has dynamically polymorphic target. We present a accurate and hardware-efficient indirect branch target predictor. It can reduce the tags which has to be stored in the Indirect Branch Target Cache without a sacrifice of the prediction accuracy. We implement the proposed scheme on SimpleScalar and show the efficiency running SPEC95 benchmarks.

  • PDF

Efficient Indirect Branch Predictor Based on Data Dependence (효율적인 데이터 종속 기반의 간접 분기 예측기)

  • Paik Kyoung-Ho;Kim Eun-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.1-14
    • /
    • 2006
  • The indirect branch instruction is a most substantial obstacle in utilizing ILP of modem high performance processors. The target address of an indirect branch has the polymorphic characteristic varied dynamically, so it is very difficult to predict the accurate target address. Therefore the performance of a processor with speculative methodology is reduced significantly due to the many execution cycle delays in occurring the misprediction. We proposed the very accurate and novel indirect branch prediction scheme so called data-dependence based prediction. The predictor results in the prediction accuracy of 98.92% using 1K entries, and. 99.95% using 8K But, all of the proposed indirect predictor including our predictor has a large hardware overhead for restoring expected target addresses as well as tags for alleviating an aliasing. Hence, we propose the scheme minimizing the hardware overhead without sacrificing the prediction accuracy. Our experiment results show that the hardware is reduced about 60% without the performance loss, and about 80% sacrificing only the performance loss of 0.1% in aspect of the tag overhead. Also, in aspect of the overhead of storing target addresses, it can save the hardware about 35% without the performance loss, and about 45% sacrificing only the performance loss of 1.11%.