• Title/Summary/Keyword: indexing method

검색결과 533건 처리시간 0.025초

비디오 내 이동 객체의 색인 정보를 이용한 궤적 유사도 측정 기법 (Similarity Measurement Method of Trajectory using Indexing Information of Moving Object in Video)

  • 김정인;최창;김판구
    • 스마트미디어저널
    • /
    • 제1권3호
    • /
    • pp.43-47
    • /
    • 2012
  • 멀티미디어 데이터의 사용이 증대됨에 따라, 이를 관리하고 검색하기 위한 다양한 연구 및 시스템이 개발되고 있다. 하지만 일반적인 검색 방법이 비디오 데이터 내 관련 태그정보나 제목을 통해 검색이 되기 때문에 많은 어려움이 있다. 따라서 본 논문에서는 비디오 검색을 위해 비디오 내 이동 객체의 정보를 이용한 궤적 정보를 통해 유사도 측정 기법에 대해 기술한다. 전체적인 과정은 CCTV 비디오 데이터를 그레이 스케일화 하여, 이동 객체를 추출한 후 라벨링 과정을 통해 궤적을 추출한다. 이를 통해 유사도 즉정을 위한 TSR(Tansent Space Representation)과 DTW(Dynamic Time Warping) 알고리즘을 사용하여 두 알고리즘을 비교 분석한다.

  • PDF

지도 일반화를 지원하는 계층화된 공간 색인 기법 (Leveled Spatial Indexing Technique supporting Map Generalization)

  • 이기정;황보택근;양영규
    • 한국공간정보시스템학회 논문지
    • /
    • 제6권2호
    • /
    • pp.15-22
    • /
    • 2004
  • 핸드폰의 화면 크기 때문에 핸드폰에서의 지도 서비스는 문제점을 가지고 있다. 핸드폰과 같은 작은 화면에서 효율적으로 지도 데이터를 표현하기 위해서는 첫째, 지도 일반화를 이용하여 상세한 지도 데이터를 간략하게 만드는 과정이 필요하며, 둘째, 간략화된 데이터를 계층화하여 사용자의 확대 축소 명령을 빠르게 수행할 수 있어야 한다. 그러나, 기존의 연구들은 일부의 지도 일반화만 지원하거나 실시간으로 처리하지 못하는 문제점들을 가지고 있다. 본 논문에서 제안하는 LMG-tree는 계층화된 하나의 색인 트리를 사용함으로 저장 공간의 효율성을 가지고 있으며, 지도 일반화를 지원하여 실시간 지도 서비스가 가능하도록 하였다.

  • PDF

기독교 관련 웹 사이트 내 색인에 관한 연구 (A Study on Christian Website Indexing)

오디오 데이터의 특징 파라메터 구성에 따른 내용기반 분석 (The Content Based Analysis According to the Composition of the Feature Parameters for the Auditory Data)

  • 한학용;허강인;김수훈
    • 한국음향학회지
    • /
    • 제21권2호
    • /
    • pp.182-189
    • /
    • 2002
  • 본 논문은 오디오 색인·검색 시스템을 구현하기 위하여 오디오 신호에 대한특징 파라메터 풀 (pool)을 구성하고 이에 따른 오디오 데이터의 내용분석 및 분류에 관한 연구이다. 오디오 데이터는 기본적인 다양한 오디오 형태로 분류되어진다. 본 논문에서는 오디오 데이터의 분류에 이용 가능한 특징 파라메터를 분석하고 추출방법에 대하여 논한다. 그리고 특징 파라메터 풀을 색인 그룹 단위로 구성하여 오디오 카테고리에 대한 설정된 특징들의 포함 정도와 색인기준을 오디오 데이터의 내용을 중심으로 비교 ·분석한다. 그리고 위의 결과를 바탕으로 분류절차를 구성하여 오디오 신호를 분류하는 모의실험을 행하였다.

문자 인식에 의해 구축된 한글 문서 데이터베이스에 대한 정보 검색 (Retrieving Information from Korean OCR Text Database)

  • 이준호;이충식;한선화;김진형
    • 한국정보처리학회논문지
    • /
    • 제6권4호
    • /
    • pp.833-841
    • /
    • 1999
  • 문자 인식에 의해 구축된 문서들은 키보드 입력에 의해 구축된 문서들에 비하여 다수의 오류를 포함한다. 따라서 이러한 문서들로부터 원하는 정보를 검색하기 위해서는 다수의 오류를 포함하고 있는 문서들에 대한 효과적인 자동 색인 방법이 요구된다. 본 연구에서는 개별 문자 인식률 90% 수준의 문자 인식기에 의해 구축된 한글 문서 데이터베이스로부터 원하는 정보를 효과적으로 검색하기 위한 자동 색인 방법에 대하여 살펴본다. 실험 결과는 문자 인식에 의해 구축된 한글 문서 데이터베이스에 대해서는 형태소 단위 색인법과 2-gram 기반 색인법이 유사한 수준의 검색 효과를 제공함을 보여준다.

  • PDF

함정전투체계 표적 색인을 위한 TPR-Tree 상향식 갱신 기법 (A Study on Bottom-Up Update of TPR-Tree for Target Indexing in Naval Combat Systems)

  • 고영근
    • 한국군사과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.266-277
    • /
    • 2019
  • In modern warfare, securing time for preemptive response is recognized as an important factor of victory. The naval combat system, the core of naval forces, also strives to increase the effectiveness of engagement by improving its real-time information processing capabilities. As part of that, it is considered to use the TPR-tree in the naval combat system's target indexing because spatio-temporal searches can be performed quickly even as the number of target information increases. However, because the TPR-tree is slow to process updates, there is a limitation to handling frequent updates. In this paper, we present a method for improving the update performance of TPR-tree by applying the bottom-up update scheme, previously proposed for R-tree, to the TPR-tree. In particular, we analyze the causes of overlaps occurring when applying the bottom-up updates and propose ways to limit the MBR expansion to solve it. Our experimental results show that the proposed technique improves the update performance of TPR-tree from 3.5 times to 12 times while maintaining search performance.

통계적기법에 의한 한글자동색인의 연구 (A Study on Automatic Indexing of Korean Texts based on Statistical Criteria)

  • 우동진
    • 정보관리학회지
    • /
    • 제4권1호
    • /
    • pp.47-86
    • /
    • 1987
  • 본 연구는 한글자동색인에 관한 연구로 한국전자통신연구소의 DOCUMENT Data Base로부터 299개 문헌의 제목과 초록을 무작위로 추출하여 단어분리를 시도하고, 분리된 단어군, 인식어를 제외한 단어군, 인식어와 불용어를 제외한 단어군, 그리고 인식어와 불용어를 제외하고 복합어를 구성하여 포함한 단어군 등 4개의 시험군을 설정한 후, 파오의 전환점 산출기과 스파크죤스의 역문헌 가중기법, 살톤의 문헌분리 가중기법을 적용하여 색인어를 선정하고 이를 비교 평가하여 한글문헌의 자동색인 방안을 모색하였다.

  • PDF

A PROPOSAL OF SEMI-AUTOMATIC INDEXING ALGORITHM FOR MULTI-MEDIA DATABASE WITH USERS' SENSIBILITY

  • Mitsuishi, Takashi;Sasaki, Jun;Funyu, Yutaka
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.120-125
    • /
    • 2000
  • We propose a semi-automatic and dynamic indexing algorithm for multi-media database(e.g. movie files, audio files), which are difficult to create indexes expressing their emotional or abstract contents, according to user's sensitivity by using user's histories of access to database. In this algorithm, we simply categorize data at first, create a vector space of each user's interest(user model) from the history of which categories the data belong to, and create vector space of each data(title model) from the history of which users the data had been accessed from. By continuing the above method, we could create suitable indexes, which show emotional content of each data. In this paper, we define the recurrence formulas based on the proposed algorithm. We also show the effectiveness of the algorithm by simulation result.

  • PDF

Issues and Empirical Results for Improving Text Classification

  • Ko, Young-Joong;Seo, Jung-Yun
    • Journal of Computing Science and Engineering
    • /
    • 제5권2호
    • /
    • pp.150-160
    • /
    • 2011
  • Automatic text classification has a long history and many studies have been conducted in this field. In particular, many machine learning algorithms and information retrieval techniques have been applied to text classification tasks. Even though much technical progress has been made in text classification, there is still room for improvement in text classification. In this paper, we will discuss remaining issues in improving text classification. In this paper, three improvement issues are presented including automatic training data generation, noisy data treatment and term weighting and indexing, and four actual studies and their empirical results for those issues are introduced. First, the semi-supervised learning technique is applied to text classification to efficiently create training data. For effective noisy data treatment, a noisy data reduction method and a robust text classifier from noisy data are developed as a solution. Finally, the term weighting and indexing technique is revised by reflecting the importance of sentences into term weight calculation using summarization techniques.

음소인식 오류에 강인한 N-gram 기반 음성 문서 검색 (N-gram Based Robust Spoken Document Retrievals for Phoneme Recognition Errors)

  • 이수장;박경미;오영환
    • 대한음성학회지:말소리
    • /
    • 제67호
    • /
    • pp.149-166
    • /
    • 2008
  • In spoken document retrievals (SDR), subword (typically phonemes) indexing term is used to avoid the out-of-vocabulary (OOV) problem. It makes the indexing and retrieval process independent from any vocabulary. It also requires a small corpus to train the acoustic model. However, subword indexing term approach has a major drawback. It shows higher word error rates than the large vocabulary continuous speech recognition (LVCSR) system. In this paper, we propose an probabilistic slot detection and n-gram based string matching method for phone based spoken document retrievals to overcome high error rates of phone recognizer. Experimental results have shown 9.25% relative improvement in the mean average precision (mAP) with 1.7 times speed up in comparison with the baseline system.

  • PDF