• Title/Summary/Keyword: index interpolation

Search Result 101, Processing Time 0.024 seconds

The Assessment of Coastal Water Quality Grade Using GIS (GIS를 이용한 연안 수질등급 평가)

  • Jeong, Jong-Chul;Cho, Hong-Lae
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • The purpose of this study is to assess spatiotemporal variation of coastal water quality according to time and location changes. For this we developed numerical marine trophic index base on four water quality components (chlorophyll, suspended solids, dissolved inorganic nitrogen and phosphorus) and applied this index to the water quality data measured in the korean coastal zone for the 7-years period from 1997 to 2003. Water quality data are obtained only at selected sites even though they are potentially available at any location. Therefore, in order to estimate spatial variation of coastal water quality, it is necessary to estimate the unknown values at unsampled locations based on observation data. In this study, we used IDW (Inverse Distance Weighted) method to predict water quality components at unmeasured locations and applied marine trophic index to predicted values obtained by IDW interpolation. The results of this study indicate that marine trophic index and spatial interpolation are useful for understanding spatiotemporal characteristics of coastal water quality.

Spatial Estimation of Forest Species Diversity Index by Applying Spatial Interpolation Method - Based on 1st Forest Health Management data- (공간보간법 적용을 통한 산림 종다양성지수의 공간적 추정 - 제1차 산림의 건강·활력도 조사 자료를 이용하여 -)

  • Lee, Jun-Hee;Ryu, Ji-Eun;Choi, Yu-Young;Chung, Hye-In;Jeon, Seong-Woo;Lim, Jong-Hwan;Choi, Hyung-Soon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.4
    • /
    • pp.1-14
    • /
    • 2019
  • The 1st Forest Health Management survey was conducted to examine the health of the forests in Korea. However, in order to understand the health of the forests, which account for 63.7% of the total land area in South Korea, it is necessary to comprehensively spatialize the results of the survey beyond the sampling points. In this regard, out of the sample points of the 1st Forest Health Management survey in Gyeongbuk area, 78 spots were selected. For these spots, the species diversity index was selected from the survey sections, and the spatial interpolation method was applied. Inverse distance weighted (IDW), Ordinary Kriging and Ordinary Cokriging were applied as spatial interpolation methods. Ordinary Cokriging was performed by selecting vegetation indices which are highly correlated with species diversity index as a secondary variable. The vegetation indices - Normalized Differential Vegetation Index(NDVI), Leaf Area Index(LAI), Sample Ratio(SR) and Soil Adjusted Vegetation Index(SAVI) - were extracted from Landsat 8 OLI. Verification was performed by the spatial interpolation method with Mean Error(ME) and Root Mean Square Error(RMSE). As a result, Ordinary Cokriging using SR showed the most accurate result with ME value of 0.0000218 and RMSE value of 0.63983. Ordinary Cokriging using SR was proven to be more accurate than Ordinary Kriging, IDW, using one variable. This indicates that the spatial interpolation method using the vegetation indices is more suitable for spatialization of the biodiversity index sample points of 1st Forest Health Management survey.

Analysis of channel estimation performance associated with the interpolation order in OFDM System (OFDM 시스템에서 보간 순서에 따르는 채널 추정기의 성능 비교)

  • Cho, Chang-Yeon;Kim, Joon-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.125-126
    • /
    • 2007
  • In this paper, we analyze the channel estimation performances associated with the interpolation order for OFDM systems. We first analyze the time varying channel and frequency selective channel, and then we derive the channel Index which indicates the ratio of time axis variation and frequency axis variation. The analyzed results show that time interpolation followed by a frequency interpolation is adequate for the channel with a channel index larger than a certain threshold value and vice versa. Computer simulation explains that the method which decides Interpolation order outperforms fixed order estimation.

  • PDF

Trajectory Planning for Torque Minimization of Robot Manipulators Using the Lagrange Interpolation Method (라그랑지 보간법을 이용한 로봇 매니퓰레이터의 토크 최소화를 위한 궤적계획)

  • Luo, Lu-Ping;Hwang, Soon-Woong;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2370-2378
    • /
    • 2015
  • This paper proposes an algorithm using Lagrange interpolation method to realize trajectory planning for torque minimization of robot manipulators. For the algorithm, position constraints of robot manipulators should be given and the stability of robot manipulators should be satisfied. In order to avoid Runge's phenomenon, we set up time interpolation points using Chebyshev interpolation points. After that, we found suitable angle which corresponds to the points and then we got trajectories of joint's angle, velocity, acceleration using Lagrange interpolation method. We selected performance index for torque consumption optimization of robot manipulator. The method went through repetitive computation process to have minimum value of the performance index by calculated trajectory. Through the process, we could get optimized trajectory to minimize torque and performance index and guarantee safety of the motion for manipulator performance.

An Optimal Half-Band FIR Filter for Image Pyramied (영상 피라미드를 위한 최적 Half-Band FIR 필터)

  • 박섭형;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.7
    • /
    • pp.826-835
    • /
    • 1988
  • In this paper, we analyze the generation of an image pyramid as a 2-dimensional decimation-interpolation process, and suggest a performance index of FIR filter for decimation and interpolation filter. Until now, most deciamtion and interpolation filters are designed via the approximation of the impulse response of an ideal filter. In this paper, however, we propose a new performance index that minimizes the maximum frequency-weighted mean square error between the desired and the generated interpolated signal, and propose an optimal half-band filter based on the proposed performance index as an example. Some simulation results with real images show that the proposed optimal half-band filter yields a higher PSNR as well as the more preferable image quality, in comparison with other currently used filters with the same computational complexity.

  • PDF

An Efficient Subsequence Matching Method Based on Index Interpolation (인덱스 보간법에 기반한 효율적인 서브시퀀스 매칭 기법)

  • Loh Woong-Kee;Kim Sang-Wook
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.345-354
    • /
    • 2005
  • Subsequence matching is one of the most important operations in the field of data mining. The existing subsequence matching algorithms use only one index, and their performance gets worse as the difference between the length of a query sequence and the site of windows, which are subsequences of a same length extracted from data sequences to construct the index, increases. In this paper, we propose a new subsequence matching method based on index interpolation to overcome such a problem. An index interpolation method constructs two or more indexes, and performs search ing by selecting the most appropriate index among them according to the given query sequence length. In this paper, we first examine the performance trend with the difference between the query sequence length and the window size through preliminary experiments, and formulate a search cost model that reflects the distribution of query sequence lengths in the view point of the physical database design. Next, we propose a new subsequence matching method based on the index interpolation to improve search performance. We also present an algorithm based on the search cost formula mentioned above to construct optimal indexes to get better search performance. Finally, we verify the superiority of the proposed method through a series of experiments using real and synthesized data sets.

Low Complexity Hybrid Interpolation Algorithm using Weighted Edge Detector (가중치 윤곽선 검출기를 이용한 저 복잡도 하이브리드 보간 알고리듬)

  • Kwon, Hyeok-Jin;Jeon, Gwang-Gil;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.241-248
    • /
    • 2007
  • In predictive image coding, a LS (Least Squares)-based adaptive predictor is an efficient method to improve image edge predictions. This paper proposes a hybrid interpolation with weighted edge detector. A hybrid approach of switching between bilinear interpolation and EDI (Edge-Directed Interpolation) is proposed in order to reduce the overall computational complexity The objective and subjective quality is also similar to the bilinear interpolation and EDI. Experimental results demonstrate that this hybrid interpolation method that utilizes a weighted edge detector can achieve reduction in complexity with minimal degradation in the interpolation results.

VQ Codebook Index Interpolation Method for Frame Erasure Recovery of CELP Coders in VoIP

  • Lim Jeongseok;Yang Hae Yong;Lee Kyung Hoon;Park Sang Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.877-886
    • /
    • 2005
  • Various frame recovery algorithms have been suggested to overcome the communication quality degradation problem due to Internet-typical impairments on Voice over IP(VoIP) communications. In this paper, we propose a new receiver-based recovery method which is able to enhance recovered speech quality with almost free computational cost and without an additional increment of delay and bandwidth consumption. Most conventional recovery algorithms try to recover the lost or erroneous speech frames by reconstructing missing coefficients or speech signal during speech decoding process. Thus they eventually need to modify the decoder software. The proposed frame recovery algorithm tries to reconstruct the missing frame itself, and does not require the computational burden of modifying the decoder. In the proposed scheme, the Vector Quantization(VQ) codebook indices of the erased frame are directly estimated by referring the pre-computed VQ Codebook Index Interpolation Tables(VCIIT) using the VQ indices from the adjacent(previous and next) frames. We applied the proposed scheme to the ITU-T G.723.1 speech coder and found that it improved reconstructed speech quality and outperforms conventional G.723.1 loss recovery algorithm. Moreover, the suggested simple scheme can be easily applicable to practical VoIP systems because it requires a very small amount of additional computational cost and memory space.

Intelligent interpolation methods for a full-scale SPOT-DEM

  • Kim, Seung-Bum;Park, Won-Kyu;Kim, Tag-Gon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.171-176
    • /
    • 1999
  • Intelligent schemes for an automatic generation of DEM (digital elevation model) are implemented. The need for these post-processing schemes is that interpolation alone produces severe blunders, however sophisticated it is. These blunders occur most seriously along the boundaries of a scene, over rivers, and along the coast. Even a state-of-the-art commercial software retains such blunders. The intelligent schemes implemented are (1) center-of-gravity and empty-center-index which quantify how evenly distributed interpolants are within in interpolation radius. (2) a segmentation scheme to discern whether or not an empty segment in stereo-match results should be interpolated, and (3) a segmentation scheme for removing noise-like features, with these methods, in the final DEM, identical coastline and river region to those in the original SPOT scenes are achieved. The DEM exhibits substantial improvements over the products of an existing commercial software.

  • PDF

A Study on the GIS for The Sea Environmental Management I - Focus on the Study of A Interpolation on The Application of LDI Algorism - (GIS를 활용한 해양환경관리에 관한 연구 I - LDI 알고리즘 적용을 위한 보간법에 관한 연구 -)

  • Lee, Hyoung Min;Park, GI Hark
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.443-452
    • /
    • 2006
  • Today, satellite remote sensing (RS) and geographic information systems (GIS) plays an important role as an advanced science and technology. This study was developed a Line Density Algorithm which was clarify and describe the thermal front by using NOAA SST (sea surface temperature) and GIS spatial analysis for systemic and effective management of fish raising industry and sea environmental pollution by land reclamation program. Before this, a study about a interpolation method was carry out which was very important for estimate the hidden value between a special point. For this study Inverse Distance Weighted interpolation, Spline interpolation, Kriging interpolation methods were choose and SST data from 2001 to 2004 in spring (March, April, May) were analyzed. According to the study Kriging interpolation method was the very adaptive method from a practical point of view and excellent in description and precision then others. Finally, the result of this study will be use for develope the Line Density Index Algorism.