International Journal of Fuzzy Logic and Intelligent Systems
/
v.10
no.1
/
pp.89-93
/
2010
In this paper a new fuzzy clustering approach to the color clustering problem has been proposed. To deal with the limitations of the traditional FCM algorithm, we propose a spatial homogeneity-based FCM algorithm. Moreover, the cluster validity index is employed to automatically determine the number of clusters for a given image. We refer to this method as VS-FCM algorithm. The effectiveness of the proposed method is demonstrated through various clustering examples.
The K-means algorithm is widely used at the initial stage of data analysis in data mining process, partly because of its low time complexity and the simplicity of practical implementation. Cluster validity indices are used along with the algorithm in order to determine the number of clusters as well as the clustering results of datasets. In this paper, we present a performance comparison of sixteen indices, which are selected from forty indices in literature, while considering their applicability to nonhierarchical clustering algorithms. Data sets used in the experiment are generated based on multivariate normal distribution. In particular, four error types including standardization, outlier generation, error perturbation, and noise dimension addition are considered in the comparison. Through the experiment the effects of varying number of points, attributes, and clusters on the performance are analyzed. The result of the simulation experiment shows that Calinski and Harabasz index performs the best through the all datasets and that Davis and Bouldin index becomes a strong competitor as the number of points increases in dataset.
Proceedings of the Korean Society of Computer Information Conference
/
2011.01a
/
pp.81-84
/
2011
본 논문은 전압 이벤트 현상 중 순간전압강하(Sag) 현상에 초점을 맞추었다. Sag 현상의 심각한 정도를 표현하는 심각도(Voltage Sag Severity) 지수는 동일 지속시간에 대한 임계치와의 비로 표현하였다. 제안하는 확장된 심각도(Expanded Severity) 지수는 sag현상의 분포에 따른 일시반복성의 정보를 표현하였다. 기존의 임계치를 표현하는 ITIC curve를 기반으로 된 심각도와 sag 현상이 발생하는 지속시간-전압 그래프의 분포를 fuzzy clustering을 통하여 medoid를 측정하고, medoid의 심각도와 실제 임계치에 근접한 sag 지점의 심각도를 계산하여 비교하였다. 확장된 심각도 지수는 심각도가 높은 현상들과의 연계성을 나타내는 지수로 심각한 정도의 수치 정보 이외에 일시적인 현상인지 지속 반복적인 현상인지를 0과 1사이의 수치로 표현하였고, 실험을 통하여 입증하였다.
Journal of the Korean Operations Research and Management Science Society
/
v.42
no.3
/
pp.25-34
/
2017
K-means is a popular and efficient data clustering method that only uses intra-cluster distance to establish a valid index with a previously fixed number of clusters. K-means is useless without a suitable number of clusters for unsupervised data. This paper aimsto propose the Group Search Optimization (GSO) using Silhouette to find the optimal data clustering solution with a number of clusters for unsupervised data. Silhouette can be used as valid index to decide the number of clusters and optimal solution by simultaneously considering intra- and inter-cluster distances. The performance of GSO using Silhouette is validated through several experiment and analysis of data sets.
Journal of the Korea Society of Computer and Information
/
v.29
no.5
/
pp.155-164
/
2024
This study proposes an unsupervised learning-based clustering model to estimate the ESG ratings of domestic public institutions. To achieve this, the optimal number of clusters was determined by comparing spectral clustering and k-means clustering. These results are guaranteed by calculating the Davies-Bouldin Index (DBI), a model performance index. The DBI values were 0.734 for spectral clustering and 1.715 for k-means clustering, indicating lower values showed better performance. Thus, the superiority of spectral clustering was confirmed. Furthermore, T-test and ANOVA were used to reveal statistically significant differences between ESG non-financial data, and correlation coefficients were used to confirm the relationships between ESG indicators. Based on these results, this study suggests the possibility of estimating the ESG performance ranking of each public institution without existing ESG ratings. This is achieved by calculating the optimal number of clusters, and then determining the sum of averages of the ESG data within each cluster. Therefore, the proposed model can be employed to evaluate the ESG ratings of various domestic public institutions, and it is expected to be useful in domestic sustainable management practice and performance management.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.233-237
/
2006
This study proposes an innovative measure for evaluating the performance of text clustering. In using K-means algorithm and Kohonen Networks for text clustering, the number clusters is fixed initially by configuring it as their parameter, while in using single pass algorithm for text clustering, the number of clusters is not predictable. Using labeled documents, the result of text clustering using K-means algorithm or Kohonen Network is able to be evaluated by setting the number of clusters as the number of the given target categories, mapping each cluster to a target category, and using the evaluation measures of text. But in using single pass algorithm, if the number of clusters is different from the number of target categories, such measures are useless for evaluating the result of text clustering. This study proposes an evaluation measure of text clustering based on intra-cluster similarity and inter-cluster similarity, what is called CI (Clustering Index) in this article.
We accomplish clustering analyses for yeast cell cycle microarray expression data. To reflect the characteristics of a time-course data, we screen the genes using the test statistics with Fourier coefficients applying a FDR procedure. We compare the results done by model-based clustering, K-means, PAM, SOM, hierarchical Ward method and Fuzzy method with the yeast data. As the validity measure for clustering results, connectivity, Dunn index and silhouette values are computed and compared. A biological interpretation with GO analysis is also included.
Communications for Statistical Applications and Methods
/
v.22
no.1
/
pp.55-67
/
2015
An important problem in cluster analysis is the selection of variables that define cluster structure that also eliminate noisy variables that mask cluster structure; in addition, outlier detection is a fundamental task for cluster analysis. Here we provide an automated K-means clustering process combined with variable selection and outlier identification. The Automated K-means clustering procedure consists of three processes: (i) automatically calculating the cluster number and initial cluster center whenever a new variable is added, (ii) identifying outliers for each cluster depending on used variables, (iii) selecting variables defining cluster structure in a forward manner. To select variables, we applied VS-KM (variable-selection heuristic for K-means clustering) procedure (Brusco and Cradit, 2001). To identify outliers, we used a hybrid approach combining a clustering based approach and distance based approach. Simulation results indicate that the proposed automated K-means clustering procedure is effective to select variables and identify outliers. The implemented R program can be obtained at http://www.knou.ac.kr/~sskim/SVOKmeans.r.
In many scientific and commercial applications such as Earth Observation System (EOSDIS) and mobile Phone services tracking a large number of clients, it is a daunting task to archive and index ever increasing volume of complex data that are continuously added to databases. To efficiently manage multidimensional data in scientific and data warehousing environments, R-tree based index structures have been widely used. In this paper, we propose a scalable technique called seeded clustering that allows us to maintain R-tree indexes by bulk insertion while keeping pace with high data arrival rates. Our approach uses a seed tree, which is copied from the top k levels of a target R-tree, to classify input data objects into clusters. We then build an R-tree for each of the clusters and insert the input R-trees into the target R-tree in bulk one at a time. We present detailed algorithms for the seeded clustering and bulk insertion as well as the results from our extensive experimental study. The experimental results show that the bulk insertion by seeded clustering outperforms the previously known methods in terms of insertion cost and the quality of target R-trees measured by their query performance.
Seo Suk. T.;Son Seo. H.;Lee In. G.;Jeong Hye. C.;Kwon Soon. H.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.171-174
/
2005
기존의 클러스터 평가 지표(cluster validation index)는 클러스터의 개수가 커질수록 클러스터 평가 지표 값이 단조 감소하는 경향을 보인다. 최근에 이러한 단점을 보완하는 새로운 클러스터 평가 지표가 본 논문 저자중의 하나에 의해 제안되었으나, over-clustering의 단점 을 지니고 있다. 본 논문에서는, 클러스터 평가 지표 값이 단조 감소 및 over-clustering을 방지할 수 있는 새로운 클러스터 평가 지표를 제안하고, 여러 가지 예제를 통하여 새롭게 제안된 평가 지표의 타당성을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.