• Title/Summary/Keyword: independent component analysis

Search Result 532, Processing Time 0.024 seconds

Performance Improvement of General Regression Neural Network Using Principal Component Analysis (주요성분분석에 의한 일반회귀 신경망의 성능개선)

  • Cho, Yong-Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11
    • /
    • pp.3408-3416
    • /
    • 2000
  • This paper proposes an efficient method for improving the performance of a general regression neural network by using the feature to the independent variables as the center for partern-layer neurons. The adaptive principal component analysis is applied for extracting, efficiently the fcarures by reducing the dimension of given independent variables. In can acluevc a supertor property of the principal component analysis that converts input data into set of statistically independent features and the general regression neuralnetwork, espedtively. The proposed general regression neural network has been applied to regress the Solow's economy(2-independent variable set) and the wie elephone(1-independent vanable set). The simulation results show that the proposed meural networks have better performances of the regressionfor the lest data, in comparison with those using the means or the weighted means of independent variables. Also,it is affected less by the number of neurons and the scope of the smoothing factor.

  • PDF

The Motion Artifact Reduction in Photoplethysmography Using Independent Component Analysis (독립 요소 분석을 통한 Photoplethysmography에서의 동잡음 제거)

  • 김경하;유선국;김병수;김남현
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.598-605
    • /
    • 2003
  • In this paper, we propose the method that separates PPG signal and motion artifact signal from two input signals using new independent component analysis algorithm in time domain. In order to eliminate the large level artifact efficiently, block interleaving. lowpass time filtering and innovation processing technique were applied in ICA preprocessing, and FastICA algorithm were applicable. Experiments are made with the numerical simulation and the real PPG signal including four kinds of motion artifact pattern. Our results show that ICA can effectively detect, separate and remove motion artifact in input signals. Then from the separated signals we restore the original PPG signal and propose a new method which computes SpO$_2$ using ICA mixing matrix.

Microphone Array Based Speech Enhancement Using Independent Vector Analysis (마이크로폰 배열에서 독립벡터분석 기법을 이용한 잡음음성의 음질 개선)

  • Wang, Xingyang;Quan, Xingri;Bae, Keunsung
    • Phonetics and Speech Sciences
    • /
    • v.4 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • Speech enhancement aims to improve speech quality by removing background noise from noisy speech. Independent vector analysis is a type of frequency-domain independent component analysis method that is known to be free from the frequency bin permutation problem in the process of blind source separation from multi-channel inputs. This paper proposed a new method of microphone array based speech enhancement that combines independent vector analysis and beamforming techniques. Independent vector analysis is used to separate speech and noise components from multi-channel noisy speech, and delay-sum beamforming is used to determine the enhanced speech among the separated signals. To verify the effectiveness of the proposed method, experiments for computer simulated multi-channel noisy speech with various signal-to-noise ratios were carried out, and both PESQ and output signal-to-noise ratio were obtained as objective speech quality measures. Experimental results have shown that the proposed method is superior to the conventional microphone array based noise removal approach like GSC beamforming in the speech enhancement.

Dried pepper sorting using independent component analysis on RGB images (RGB영상의 독립성분분석을 이용한 건고추영상 분류)

  • Kwon, Ki-Hyeon;Lim, Jung-Dae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2012
  • Hot pepper can be easily faded or discolored in drying process, so we need to use the sorting technique to improve the quality for dried hot pepper. Independent Component Analysis (ICA) is one of the most widely used methods for blind source separation. In this paper we use this technique to get a concentration image of the most important component which plays a role in the dried pepper. This concentration image is different from the binary image and it reflects the characteristics of major components, so that we know the distribution and quality of the component and how to sort the dried pepper. Also, the size of the concentration image can tell the relation with capsaicinoids which make hot taste. We propose a sorting method of the dried hot pepper that is faded or discolored and lacked a major component likes capsaicin in drying process using ICA concentration image.

Eyeball Movements Removal in EEG by Independent Component Analysis (독립성분분석에의한 뇌파 안구운동 제거)

  • Shim, Yong-Soo;Choi, Seong-Ho;Lee, Il-Keun
    • Annals of Clinical Neurophysiology
    • /
    • v.3 no.1
    • /
    • pp.26-30
    • /
    • 2001
  • Purpose : Eyeball movement is one of the main artifacts in EEG. A new approach to the removal of these artifacts is presented using independent component analysis(ICA). This technique is a signal-processing algorithm to separate independent sources from unknown mixed signals. This study was performed to show that ICA is a useful method for the separation of EEG components with little data deformity. Methods : 12 sets of 10 sec digital EEG data including eye opening and closure were obtained using international 10~20 system scalp electrodes. ICA with 18 tracings of double banana bipolar montage was performed. Among obtained 18 independent components, two components, which were thought to be eyeball movements were removed. Other 16 components were reconstructed into original bipolar montage. Power spectral analysis of EEGs before and after ICA was done and compared statistically. Total 12 pairs of data were compared by visual inspection and relative power comparison. Results : Waveforms of each pair looked alike by visual inspection. Means of relative power before and after ICA were 29.16% vs. 28.27%, 12.12% vs. 12.41%, 10.55% vs. 10.52%, and 19.33% vs. 18. 33% for alpha, beta, theta, and delta, respectively. These values were statistically same before and after ICA. Conclusions : We found little data deformity after ICA and it was possible to isolate eyeball movements in EEG recordings. Many other components of EEG could be selectively separated using ICA.

  • PDF

Predicting Unknown Composition of a Mixture Using Independent Component Analysis (독립성분분석을 이용한 혼합물의 미지성분비율 예측)

  • Lee Hye-Seon;Song Jae-Kee;Park Hae-Sang;Jun Chi-Hyuck
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.135-148
    • /
    • 2006
  • Independent component analysis (ICA) is a statistical method for transforming an observed high-dimensional multivariate data into statistically independent components. ICA has been applied increasingly in wide fields of spectrum application since ICA is able to extract unknown components of a mixture from spectra. We focus on application of ICA for separating independent sources and predicting each composition using extracted components. The theory of ICA is introduced and an application to a metal surface spectra data will be described, where subsequent analysis using non-negative least square method is performed to predict composition ratio of each sample. Furthermore, some simulation experiments are performed to demonstrate the performance of the proposed approach.

An Analysis of Noise Robustness for Multilayer Perceptrons and Its Improvements (다층퍼셉트론의 잡음 강건성 분석 및 향상 방법)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.159-166
    • /
    • 2009
  • In this paper, we analyse the noise robustness of MLPs(Multilayer perceptrons) through deriving the probability density function(p.d.f.) of output nodes with additive input noises and the misclassification ratio with the integral form of the p.d.f. functions. Also, we propose linear preprocessing methods to improve the noise robustness. As a preprocessing stage of MLPs, we consider ICA(independent component analysis) and PCA(principle component analysis). After analyzing the noise reduction effect using PCA or ICA in the viewpoints of SNR(Singal-to-Noise Ratio), we verify the preprocessing effects through the simulations of handwritten-digit recognition problems.

A New Online Calibration Algorithm for Array Antenna using Independent Component Analysis

  • Suk, Mi-Kyung;Lee, Jong-Hyun;Chun, Joo-Hwan;Park, Jin-Kyu;Kim, Yong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1568-1572
    • /
    • 2004
  • This paper proposes a new online calibration algorithm for the array antenna system. As you know, the several previous calibration methods for the mutual coupling did not estimate but measure mutual coupling effect at the real or test-bed system directly. Therefore we suggest some idea to compensate the calibration errors due to mutual coupling effect and mismatch in cables and electronic modules without the off-line calibration. In this work, we can calibrate the array antenna system under the operation of the system using Independent Component Analysis(ICA). This is what is called an online calibration. As you know, the ICA method has permutation and scaling problems. However, we solve problems of the ICA method and apply it to the calibration of an array antenna. The method simultaneously estimates the DOA(Direction of Arrival) of the signals, and calibrates the array for that specific angle. The proposed algorithm is evaluated by computer simulation and its behavior is illustrated by a numerical example.

  • PDF

Image Feature Extraction Using Independent Component Analysis of Hybrid Fixed Point Algorithm (조합형 Fixed Point 알고리즘의 독립성분분석을 이용한 영상의 특징추출)

  • Cho, Yong-Hyun;Kang, Hyun-Koo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.23-29
    • /
    • 2003
  • This paper proposes an efficient feature extraction of the images by using independent component analysis(ICA) based on neural networks of the hybrid learning algorithm. The proposed learning algorithm is the fixed point(FP) algorithm based on Newton method and moment. The Newton method, which uses to the tangent line for estimating the root of function, is applied for fast updating the inverse mixing matrix. The moment is also applied for getting the better speed-up by restraining an oscillation due to compute the tangent line. The proposed algorithm has been applied to the 10,000 image patches of $12{\times}12$-pixel that are extracted from 13 natural images. The 144 features of $12{\times}12$-pixel and the 160 features of $16{\times}16$-pixel have been extracted from all patches, respectively. The simulation results show that the extracted features have a localized characteristics being included in the images in space, as well as in frequency and orientation. And the proposed algorithm has better performances of the learning speed than those using the conventional FP algorithm based on Newton method.

  • PDF

Independent Component Analysis Based MIMO Transceiver With Improved Performance In Time Varying Wireless Channels

  • Uddin, Zahoor;Ahmad, Ayaz;Iqbal, Muhammad;Shah, Nadir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2435-2453
    • /
    • 2015
  • Independent component analysis (ICA) is a signal processing technique used for un-mixing of the mixed recorded signals. In wireless communication, ICA is mainly used in multiple input multiple output (MIMO) systems. Most of the existing work regarding the ICA applications in MIMO systems assumed static or quasi static wireless channels. Performance of the ICA algorithms degrades in case of time varying wireless channels and is further degraded if the data block lengths are reduced to get the quasi stationarity. In this paper, we propose an ICA based MIMO transceiver that performs well in time varying wireless channels, even for smaller data blocks. Simulation is performed over quadrature amplitude modulated (QAM) signals. Results show that the proposed transceiver system outperforms the existing MIMO system utilizing the FastICA and the OBAICA algorithms in both the transceiver systems for time varying wireless channels. Performance improvement is observed for different data blocks lengths and signal to noise ratios (SNRs).