• 제목/요약/키워드: indentation method

검색결과 292건 처리시간 0.02초

Studies on Damage Properties of MgO-C Refractories through Hertzian Indentation at Room and High Temperatures

  • Cho, Geun-Ho;Byeun, Yunki;Jung, Yeon-Gil
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.77-83
    • /
    • 2019
  • MgO-C refractories are used in basic furnaces and steel ladles due to their many desirable properties, such as excellent thermal shock resistance via low thermal expansion, and high thermal conductivity. However, the mechanical and thermal properties of the refractory continuously deteriorate by spalling phenomena and pore generation due to the oxidation of graphite, used as a carbon source, indicating that the characteristics and performance of MgO-C refractories need to be improved by using a new material or composition. In this study, the use of a Hertzian indentation test as a method for determining the damage and fracture behavior of an MgO-C refractory is described. The results highlight that Hertzain indentation tests can be one of the important evaluation tools for quasi-plastic damage accumulation of MgO-C refractories during falling process of scrap metal.

파일-업 재료에 대한 나노 압입 시험기의 경도 측정값 교정 (Correction of the hardness measurement for pile-up materials with a nano indentation machine)

  • 박문식
    • 한국산학기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.98-106
    • /
    • 2016
  • 본 연구는 공업용 응용이 많은 알루미늄 또는 구리와 같은 재료를 나노 압입 시험기에 의하여 탄생계수 및 경도 값을 얻을 때 파일-업(pile-up) 현상이 생기는 경우 계측 값을 교정할 수 있는 방법에 대해 다룬다. 나노 압입 시험기에 의해 얻어지는 탄성계수와 경도의 측정치는 접촉면적의 피팅 (fitting) 식에 의존하게 되는데 이는 오로지 싱크-인(sink-in) 재료에만 유효하다. 그러므로 싱크-인이 아닌 파일-업인 많은 무른 공학재료들에 있어서는 그 접촉면적이 실제보다 적게 계산되고 따라서 탄성계수와 경도는 높게 계산된다. 본 연구에서는 이미 탄생계수를 알고 있는 파일-업 거동을 보이는 재료의 경우에 경도 값을 교정하는 방법을 제안한다. 이 방법을 경금속인 Al 6061 T6와 C 12200에 적용하기 위해 인장시험, 나노 압입시험, 압입자국 측정, 그리고 유한요소해석을 수행하였다. 압입 자국 측정과 유한요소해석을 흥하여 두 재료 모두 파일-업 거동이 발생하는 것을 알 수 있었다. 제안한 교정 방법은 싱크-인 접촉면적 값을 파일-업 접촉면적 값으로 늘려 주었고 경도 측정값을 낮추어 주었다. 교정된 경도 값은 별도의 연구에서 다룬 변형률 구배 소성을 고려한 유한요소해석 결과와 잘 일치하였다.

Multi-objective optimization of tapered tubes for crashworthiness by surrogate methodologies

  • Asgari, Masoud;Babaee, Alireza;Jamshidi, Mohammadamin
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.427-438
    • /
    • 2018
  • In this paper, the single and multi-objective optimization of thin-walled conical tubes with different types of indentations under axial impact has been investigated using surrogate models called metamodels. The geometry of tapered thin-walled tubes has been studied in order to achieve maximum specific energy absorption (SEA) and minimum peak crushing force (PCF). The height, radius, thickness, tapered angle of the tube, and the radius of indentation have been considered as design variables. Based on the design of experiments (DOE) method, the generated sample points are computed using the explicit finite element code. Different surrogate models including Kriging, Feed Forward Neural Network (FNN), Radial Basis Neural Network (RNN), and Response Surface Modelling (RSM) comprised to evaluate the appropriation of such models. The comparison study between surrogate models and the exploration of indentation shapes have been provided. The obtained results show that the RNN method has the minimum mean squared error (MSE) in training points compared to the other methods. Meanwhile, optimization based on surrogate models with lower values of MSE does not provide optimum results. The RNN method demonstrates a lower crashworthiness performance (with a lower value of 125.7% for SEA and a higher value of 56.8% for PCF) in comparison to RSM with an error order of $10^{-3}$. The SEA values can be increased by 17.6% and PCF values can be decreased by 24.63% by different types of indentation. In a specific geometry, higher SEA and lower PCF require triangular and circular shapes of indentation, respectively.

미세 지립 페이퍼 공구와 롤투플레이트 압입공정을 이용한 마이크로 랜덤 패턴의 성형특성 (Forming Properties of Micro Random Pattern Using Micro Abrasive Paper Tool by Roll to Plate Indentation Method)

  • 정지영;제태진;문승환;이재령;최대희;김민주;전은채
    • 한국정밀공학회지
    • /
    • 제33권5호
    • /
    • pp.385-392
    • /
    • 2016
  • Recently in the display industry, demands for high-luminance and resolution of display devices have been steadily increasing. Generally, micro linear patterns are applied to an optical film in order to improve its properties of light. However, these patterns are easily viewed to eyes and moire phenomenon can be occurred. Micro random patterns are proposed as a method to solve these problems, increasing light-luminance and light-diffusion. However, conventional pattern manufacturing technologies have long processing times and high costs making it difficult to apply to large area molds. In order to combat this issue, micro-random patterns are formed by using a roll to plate indentation method along with abrasive paper tools composed of AlSiO2, SiC, and diamond grains. Also, forming properties, such as size and fill-factor of random patterns, are analyzed depending on type, mesh of abrasive paper tools, and indentation forces.

NI법에 의한 기계적 특성에 미치는 ZnO박막의 기판재의 영향 (Influence of Substrate on Mechanical Characteristics of ZnO Thin Film by NI Technology)

  • 정헌재;김동현;윤한기;임희섭;유윤식
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.342-346
    • /
    • 2004
  • Recently there has been a great world-wide interest in developing and characterizing new nano-structured materials. These newly developed materials are often prepared in limited quantities and shapes unsuitable for the extensive mechanical testing. The development of depth sensing indentation methods have introduced the advantage of load and depth measurement during the indentation cycle. In the present work, ZnO thin films are prepared on the Glass, GaAs(100), Si(111), and Si(100) substrates at different temperatures by pulsed laser deposition(PLD) method. Because the potential energy in c-axis is law, the films always shaw c-axis orientation at the optimized conditions in spite of the different substrates. Thin films are investigated by X-ray diffractometer and Nano indentation equipment. From these measurements it is possible to get elastic modulus and hardness of ZnO thin films on all substrates.

  • PDF

양극산화된 알루미늄과 마이크로 인덴데이션을 이용한 3차원 마이크로-나노 하이브리드 패턴 제작 (Development of 3D Micro-Nano Hybrid Patterns Using Anodized Aluminum and Micro-Indentation)

  • 권종태;신홍규;김병희;서영호
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1139-1143
    • /
    • 2007
  • A simple method for the fabrication of 3D micro-nano hybrid patterns was presented. In conventional fabrication methods of the micro-nano hybrid patterns, micro-patterns were firstly fabricated and then nano-patterns were formatted on the micro-patterns. Moreover, these micro-nano hybrid patterns could be fabricated on the flat substrate. In this paper, we suggested the fabrication method of 3D micro-nano hybrid patterns using micro-indentation on the anodized aluminum substrate. Since diameter of the hemispherical nano-pattern can be controlled by electrolyte and applied voltage in the anodizing process, we can easily fabricated nano-patterns of diameter of loom to 300nm. Nano-patterns were firstly formatted on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns of diameter of 150nm were fabricated by anodizing process, and then micro-pyramid patterns of the side-length of $50{\mu}m$ were formatted on the nano-patterns using micro-indentation. Finally we successfully replicated 3D micro-nano hybrid patterns by hot-embossing process. 3D micro-nano hybrid patterns can be applied to nano-photonic device and nano-biochip application.

압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가 (Evaluation of the Residual Stress with Respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor)

  • 심재준;한동섭;한근조
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.532-538
    • /
    • 2004
  • MEMS technology applying to the sensors and micro-electro devices is complete system. These microsystems are made by variable processes. Especially, the mentallization process has very important functions to transfer the power operating the sensor and signal induced from sensor part. But in the structures of MEMS the local stress concentration and deformation are often yielded by an irregular geometrical shape and different constraint. Therefore, this paper studies the effect of supporting type and thickness ratio about thin film of the substrate on the residual stress variation when the thermal loads is applied to the multi-layer thin film fabricated by metallization process. Specimens were made from several materials such as Al, Au and Cu. Then, uniform thermal load was applied, repeatedly. The residual stress was measured by FE Analysis and nano-indentation method using AFM. Generally, the specimen made of Al induced the larger residual stress than that of made of other materials. Specimen made of Cu and Au having the low thermal expansion coefficient induces the minimum residual stress. Similarly, the lowest indentation length was measured by nano-indentation method in the Si/Au/Cu specimen. Particularly, clusters are created in the specimen made of Cu by thermal load and the indentation length became increasingly large by cluster formation.

Study of Al-Alloy Foam Compressive Behavior Based on Instrumented Sharp Indentation Technology

  • Kim Am-Kee;Tunvir Kazi
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.819-827
    • /
    • 2006
  • The stress-strain relation of aluminum (Al) alloy foam cell wall was evaluated by the instrumented sharp indentation method. The indentation in a few micron ranges was performed on the cell wall of Al-alloy foam having a composition or Al-3wt.%Si-2wt.%Cu-2wt.%Mg as well as its precursor (material prior to foaming). To extract the stress-stram relation in terms of yield stress ${\sigma}_y$, strain hardening exponent n and elastic modulus E, the closed-form dimensionless relationships between load-indentation depth curve and elasto-plastic property were used. The tensile properties of precursor material of Al-alloy foam were also measured independently by uni-axial tensile test. In order to verify the validity of the extracted stress-strain relation, it was compared with the results of tensile test and finite element (FE) analysis. A modified cubic-spherical lattice model was proposed to analyze the compressive behavior of the Al-alloy foam. The material parameters extracted by the instrumented nanoindentation method allowed the model to predict the compressive behavior of the Al-alloy foam accurately.

Estimation of Fracture Toughness of Reactor Pressure Vessel Steels Using Automated Ball Indentation Test

  • Byun, Thak-Sang;Kim, Joo-Hark;Lee, Bong-Sang;Yoon, Ji-Hyun;Hong, Jun-Hwa
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(2)
    • /
    • pp.129-136
    • /
    • 1997
  • The automated ball indentation(ABI) test was utilized to develop a semi-nondestructive method for estimating the fracture toughness( $K_{JC}$ ) in the transition temperature range. The key concept of the method is that the indentation deformation energy to the load at which the mean ball-specimen contact pressure reaches the fracture stress is related to the fracture energy of the material. ABI tests were performed for the reactor pressure vessel(RPV) base and weld metals at the temperatures of-15$0^{\circ}C$~$0^{\circ}C$ and the fracture toughness (estimated $K_{JC}$ ) was calculated from the indentation load-depth data. For all steels the temperature dependence of the estimated fracture toughness was almost the same as that ASTM $K_{JC}$ master curve The reference temperatures( $T_{o}$)of the steels were determined form the estimated $K_{JC}$ versus temperature curves. The reference temperature was well correlated with the index temperature of 41J Charpy impact energy( $T_{41J}$).).).

  • PDF

나노 잔류응력 측정을 위한 비등방 압입자의 깊이별 응력환산계수 분석 (Stress Conversion Factor on Penetration Depth of Knoop Indentation for Assessment of Nano Residual Stress)

  • 김원준;김영진;김영천
    • 마이크로전자및패키징학회지
    • /
    • 제26권4호
    • /
    • pp.95-100
    • /
    • 2019
  • 연속압입시험법은 기존의 잔류응력 측정기법에 대한 대체기법으로 많은 분야에서 연구되고 있다. Knoop 압입자는 이러한 압입시험에서 잔류응력의 방향성을 결정하기 위해 이용되어 왔다. 기존 연구에 의하면 Knoop 압입자의 두 가지 응력환산계수의 비는 실험적으로 0.34로 고정되어 있는 것으로 알려져 있으나 이에 대하여 정량적인 분석이 부족하고, 깊이에 따른 실험결과는 미비하여 산업현장에 적용하기에 장벽이 존재한다. 본 연구에서는 연속압입시험법을 이용한 잔류응력의 방향성 측정을 위하여 응력환산계수의 비를 유한요소해석을 이용하여 측정하였다. 본 연구에서는 유한요소해석을 이용하여 압입깊이에 따른 응력환산계수의 비를 분석하고자 하였다. 이론적인 Knoop 압입자와 시편을 모델링하여 일축 잔류응력 상태에서 각각의 응력환산계수를 산출하였다. 압입자 장축 및 단축 방향의 응력환산계수를 주어진 깊이에 따라 예측할 수 있는 모델을 제시하였고, 그 원인을 분석하였다.