• Title/Summary/Keyword: indentation analysis

Search Result 206, Processing Time 0.025 seconds

Stress Analysis of the Micro-structure Considering the Residual Stress (잔류응력을 고려한 미세구조물의 강도해석)

  • 심재준;한근조;안성찬;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.820-823
    • /
    • 2002
  • MEMS structures Generally have been fabricated using surface-machining, but the interface failure between silicon substrate and evaporated thin film frequently takes place due to difference of linear coefficient of thermal expansion. Therefore this paper studied the effect of the residual stress caused by variable external loads. This study did not analyzed accurate quantity of the residual stress but trend for the effect of residual stress. Several specimens were fabricated using other material(Al, Au and Cu) and thermal load was applied. The residual stress was measured by nano-indentation using AFM. The results showed the existence of the residual stress due to thermal load. The indentation area of the thermal loaded thin film reduced about 3.5% comparing with the virgin thin film caused by residual stress. The finite element analysis results are similar to indentation test.

  • PDF

Analysis of the nano indentation using MSG plasticity (Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석)

  • 이헌기;고성현;한준수;박현철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.413-417
    • /
    • 2004
  • Recent experiments have shown the 'size effects' in micro/nano scale. But the classical plasticity theories can not predict these size dependent deformation behaviors because their constitutive models have no characteristic material length scale. The Mechanism - based Strain Gradient(MSG) plasticity is proposed to analyze the non-uniform deformation behavior in micro/nano scale. The MSG plasticity is a multi-scale analysis connecting macro-scale deformation of the Statistically Stored Dislocation(SSD) and Geometrically Necessary Dislocation(GND) to the meso-scale deformation using the strain gradient. In this research we present a study of nano-indentation by the MSG plasticity. Using W. D. Nix and H. Gao s model, the analytic solution(including depth dependence of hardness) is obtained for the nano indentation , and furthermore it validated by the experiments.

  • PDF

Evaluation of the Residual Stress on the Multi-layer Thin Film made of Different Materials (이종재료를 사용한 다층 박막에서의 잔류응력 평가)

  • 심재준;한근조;김태형;안성찬;한동섭;이성욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.135-141
    • /
    • 2003
  • MEMS structures generally have been fabricated using surface-machining method, but the interface failure between silicon substrate and evaporated thin film frequently takes place due to the residual stress inducing by the applied the various loads. And the very important physical property in the heated environment is the linear coefficient of thermal expansion. Therefore this paper studied the residual stress caused the thermal loads in the thin film and introduced the simple method to measure the trend of the residual stress by the indentation. Specimens were made of materials such as Al, Au and Cu and thermal load was applied repeatedly. The residual stress was measured by nano-indentation using AFM and FEA. The existence of the residual stress due to thermal load was verified by the experimental results. The indentation length of the thermal loaded specimens increased minimum 11.8% comparing with the virgin thin film caused by tensile residual stress. The finite element analysis results are similar to indentation test.

Analysis of the Extension Effects of Fatigue Life by Pre-Indentation in Aluminum Alloy Plates (알루미늄 합금 판재에서 예비압입에 의한 피로수명의 연장효과 분석)

  • Cho, Hwankee;Hwang, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.45-52
    • /
    • 2007
  • This paper analyzed the extension effects of fatigue life and the application of pre-indentation in aircraft structural material such as aluminum alloys. The test specimen used the thin sheet of aluminum alloy with a single-edged notch. The experiments were conducted after making the pre-crack under a constant amplitude loading. As the fatigue life extension technique, the pre-indentation making an indent on the predicted path of crack propagation was applied. The work presented here discussed about a proper mathematical relation between crack growth rate and the range of stress intensity factor and about the generalization of crack growth mechanism with large retardation effect. A technique to enhance the applicability of pre-indentation if also mentioned.

  • PDF

Evaluation of Residual Stress on Welded Joint in API X65 Pipe Line through Nondestructive Instrumented Indentation Technique (비파괴 계장화 압입시험기법을 통한 API X65 배관 용접부 잔류응력 평가)

  • 지원재;이윤희;김우식;김철만;권동일
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.547-554
    • /
    • 2003
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive instrumented indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

A Berkovich Indentation Technique Based on 3D FEA solutions for Material Property Evaluation (3차원 유한요소해에 기초한 Berkovich 압입 물성평가법)

  • Kim, Min-Soo;Hyun, Hong-Chul;Lee, Kyoung-Yoon;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1-6
    • /
    • 2008
  • Due to the self-similarity of Berkovich and conical indenters, different materials may show the same loaddepth curve for single indentation. In this study, we first compare the load-depth characteristics of conical and Berkovich indenters via finite element method. We also analyze the variation of load-depth curves with angle of Berkovich indenter, indentation parameters, and material properties. With numerical regressions of obtained data, we then propose dual-Berkovich indentation formulae for material property evaluation. The proposed approach provides the values of elastic modulus, yield strength and strain-hardening exponent and corresponding stress-strain curve with an average error of less than 3%. The method is valid for any elastic indenters made of tungsten carbide and diamond for instance.

  • PDF

Evaluation of Residual Stress for Weldments Using Continuous Indentation Technique (연속압입시험기법을 이용한 용접부 잔류응력 평가)

  • Lee Y. H.;Choi Y.;Kim K. H.;Kwon D.;Lee J. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.541-546
    • /
    • 2005
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive continuous indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

Evaluation of residual stress for weldments using continuous indentation technique (연속압입시험기법을 이용한 용접부 잔류응력 평가)

  • Lee J. S.;Choi Y.;Kim K. H.;Kwon D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.126-129
    • /
    • 2005
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive continuous indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

  • PDF

Evaluation of Brinell Hardness of Coated Surface Using Finite Element Analysis: Part 1 - A Feasibility Study (유한요소해석에 의한 코팅면의 브리넬 경도 평가: 제1보 - 타당성 연구)

  • Park, TaeJo;Kang, JeongGuk
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.378-384
    • /
    • 2020
  • The friction surfaces of mechanical parts are heat-treated or coated with hard materials to minimize wear. Increasing the hardness is a very useful way to reduce abrasive wear. The general Brinell hardness test, which is widely used for metallic materials, is not suitable because it hardly shows any change in hardness when coated with thin films. In this study, we propose a basis for the application of the new Brinell hardness test method to the coated friction surface. An indentation analysis of the rigid sphere and elastic-perfectly plastic materials is performed using a commercial finite element analysis software. The results indicate that their loadto-diameter ratio is the same; the Brinell hardness test method can be applied even when the indenter diameter is on the micrometer scale. In the case of hard coating, it is difficult to calculate Brinell hardness using the diameter of the indentation, but the study revealed, for the first time, that it can be calculated using the depth of the indentation regardless of coating. The change in hardness owing to thin film coating over a wide load range implies that the hardness evaluation method is appropriate. Additional studies on various properties related to the substrate and coating material are required to apply the proposed method.

Characterization of Elastic Modulus and Work of Adhesion in Elastomeric Polymer through Micro Instrumented Indentation Technique (마이크로 압입시험기법의 응용을 통한 탄성체 고분자 소재의 역학적 특성화 및 계면 접합에너지 평가기법 연구)

  • Lee, Gyu-Jei;Kang, Seung-Kyun;Kang, In-Geun;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1744-1748
    • /
    • 2007
  • In this study, the Johnson-Kendall-Roberts (JKR) theory was combined with the instrumented indentation technique (IIT) to evaluate work of adhesion and modulus of elastomeric polymer. Indentation test was used to obtain the load-displacement data for contacts between Tungsten Carbide indenter and elastomeric polymer. And the JKR contact model, contrived to take viscoelastic effects of polymer into account, was applied to compensate the contact area and the elastic modulus which Hertzian contact model would underestimate and overestimate, respectively. Besides, we could obtain the thermodynamic work of adhesion by considering the surface energy in this contact model. In order to define the relation between JKR contact area and applied load without optical measuring of contact area, we used the relation between applied load and contact stiffness by examining the correlation between JKR contact area and stiffness through dimensional analysis with 14 kinds of elastomeric polymer. From this work, it could be demonstrated that the interfacial work of adhesion and elastic modulus of compliant polymer can be obtained from a simple instrumented indentation testing without area measurement, and provided as the main algorithm of compliant polymer characterization.

  • PDF