• Title/Summary/Keyword: indentation analysis

Search Result 204, Processing Time 0.023 seconds

Analysis of Size Effect of Nano Scale Machining Based on Normal Stress and Indentation Theories (수직응력과 압입이론에 기반한 나노스케일 기계가공에서의 크기효과 분석)

  • Jeon, Eun-chae;Lee, Yun-Hee;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.1-6
    • /
    • 2018
  • Recently nano meter size pattern (sub-micro scale) can be machined mechanically using a diamond tool. Many studies have found a 'size effect' which referred to a specific cutting energy increase with the decrease in the uncut chip thickness at micro scale machining. A new analysis method was suggested in order to observe 'size effect' in nano scale machining and to verify the cause of the 'size effect' in this study. The diamond tool was indented to a vertical depth of 1,000nm depth in order to simplify the stress state and the normal force was measured continuously. The tip rounding was measured quantitatively by AFM. Based on the measurements and theoretical analysis, it was verified that the main cause of the 'size effect' in nano scale machining is geometrically necessary dislocations, one of the intrinsic material characteristics. st before tool failure.

Modeling of damage initiation in singly oriented ply Fiber Metal Laminate under concentrated loading conditions (집중 하중을 받는 일방향 보강 섬유 금속 적층판의 손상 개시 모델링)

  • 남현욱;정성욱;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.65-68
    • /
    • 2001
  • In this research, damage initiation in singly oriented ply (SOP) FML under concentrated loading conditions was studied. The finite element method (FEM) base on the first order shear deformation theory is used for the analysis of fiber orientation effect on FML under concentrated loading conditions. The failure indices were calculated for the variation of fiber orientation and the results were compared with indentation experiments. The failure indices were well matched with damage initiation of SOP FML. Indentation results shows that the crack initiation of SOP FML is determined by stiffness induced by fiber orientation and tile penetration load of SOP FML are influenced by the deformation tendency and boundary conditions.

  • PDF

An Analysis on the Forming Process of a Power Assisted Steering Part (PAS 부품의 성형공정해석)

  • 박성호;이호용;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.7-15
    • /
    • 1996
  • A Manufacturing process of the power steering worm blank is analyzed by FEM aimulation. The process includes mainly three operations such as indentation, extrusion, and upsetting, which was designed bya forming equipment expert. The results of simulation are summarized in terms of load-stroke relationships, die pressure distributions, effective strain distribution, and deforming patterns for each forming operation. Also, Efforts are focused to get the reason that the tool expert designed the forming process in three operations. The results of the simulation are to be useful for the next advanced process planning in terms of good dimesional accuracy, savings in material and machining, no deforaming defects and imporvements in mechanical properties.

  • PDF

Mechanical Properties of Zirconia-Based Ceramic Materials for Thermal Barrier Coating (열차폐 코팅을 위한 지르코니아계 세라믹 소재의 기계적 특성)

  • Jung, Kyu-Ick;Kim, Tae-Woo;Paik, Ungyu;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.498-503
    • /
    • 2006
  • A gas turbine blade with thermal barrier ceramic coating is operated at high temperature to increase engine efficiency. Recently, thermal barrier characteristics have been improved by advanced coating technology through microstructure control and increase of adhesion force of the coating layer. More advanced coating materials, rare earth zircon ate ceramics have been studied for replacing YSZ coatings as thermal barrier coatings. In this study, $La_2O_3,\;HfO_2,\;CeO_2,\;Gd_2O_3$ and pure or yttria stabilized zirconia were prepared. Microstructure analysis and the evaluation of mechanical properties such as Hertzian indentation and hardness test were performed.

Design of Carbon-Glass Hybrid Composite Rebar by the Combined Pultrusion and Winding (풀트루젼과 와인딩 기법을 혼합한 탄소-유리 하이브리드 복합재 보강근 설계)

  • Kweon Jin-Hwe;Choi Soo-Young;Choi Jin-Ho;Lee Sang-Gwan;Park Young-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.9-12
    • /
    • 2004
  • Presented is a preliminary design concept of the carbon-glass hybrid composite rebars for the application in the construction field. A glass fiber rod with indentation is used for the core of the rebar. Carbon fibers are placed over the glass core by pultrusion. To increase the mechanical locking force and bonding surface, carbon filament windings are added in the hoop direction over the carbon face. Finite element analysis and test were conducted to evaluate the effective stiffness and strength of the rods. The results show that the effective axial stiffness of the rebar with indentation are about $50\%$ of the straight rebar.

  • PDF

Biaxial Fracture Behavior of Alumina Ceramics : Indentation Effect on Ball-on-3-ball Test (압입에 따른 알루미나 세라믹스의 이축 파괴 거동)

  • 정성민;박성은;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.713-720
    • /
    • 2000
  • The biaxial fracture behavior of alumina ceramics was studied using ball-on-3-ball test. The polished surfaces of alumina specimens were indented at 0mm, 1mm, 2mm, 3mm apart from the center of the specimen along path A, passing between the two supporting balls from the center of the specimen, and along path B, passing above the three supporting balls from the center of the specimen. The fracture strength of the indented specimens was measured using the ball-on-3-ball test, a kind of biaxial strength test. The fracture strength increased with increasing the distance from the center to indented position. The fracture strength of the specimen indented along path B was higher than that of the specimens indented along path A. It was presented that the fracture caused by tangential stress rather than radial stress when the indented positions are 1mm and 2mm from the center of the specimen. This phenomenon was in good agreement with FEM analysis.

  • PDF

Prediction of Residual Stresses in the Boron Steel Sheet after Hot Press Forming using Material Properties Modeler and Abaqus (재료 물성 모델러와 Abaqus를 활용한 핫 프레스 포밍 후의 보론 강판내 잔류음력의 예측)

  • Ji, M.W.;Suh, Y.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.493-496
    • /
    • 2008
  • The residual stress generated in the boron steel blank formed via hot press forming process was predicted by JMatPro, a material property modeler, and Abaqus. The numerical predictions were compared by the experimental measurements obtained by the instrumented indentation. Both the predicted and measured principal stresses monitored at the outer surface of central bending position were qualitatively in good agreement. It was concluded that the residual stresses generated from hot forming process is not negligible as it has been generally assumed, although the spring back deformation is quite small. This should be specially considered from the part design stage since the tensile nature of the residual stress exhibited on the surface may lead to the stress corrosion cracking.

  • PDF

Analysis of the residual strengths and failure mechanisms in laminated composites under impact loading

  • Park, K.C.;Kim, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.3
    • /
    • pp.105-121
    • /
    • 1994
  • In this paper, we proposed the two-parameter model for predicting the residual strength in CFRP laminated composites subjected to high velocity impact and developed and formulated it based upon Cparino's by using the ratio of impact and the normalized residual strength. Critical indentation was obtained by the statical indentation tests. Impact tests were carried out through air-gun type impact equipment with the velocities varied 30-100m/sec. Projectiles were steel balls with 5 and 7mm in diameter. Test material was carbon/epoxy. The specimens were composed of [ .+-. 45 .deg. /0 .deg. /90 .deg. ]$\_$2/ and [ .+-. 45 .deg. ]$\_$4/stacking sequences and had 0.75$\^$T/*0.26$\^$W/*100$\^$L/(mm) dimension. Results from the proposed model were in good agreement with the test data. And failure mechanism due to high velocity impact is given here to examine the initation and deveolpment of damage by fractography and ultrasonic image system. The effects of the 0 .deg. -direction ply position and the amount to damage area on the residual strength are considered here.

Indentation and Sliding Contact Analysis between a Rigid Ball and DLC-Coated Steel Surface: Influence of Supporting Layer Thickness (강체인 구와 DLC 코팅면 사이의 압입 및 미끄럼 접촉해석: 지지층 두께의 영향)

  • Lee, JunHyuk;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.199-204
    • /
    • 2014
  • Various heat-treated and surface coating methods are used to mitigate abrasion in sliding machine parts. The most cost effective of these methods involves hard coatings such as diamond-like carbon (DLC). DLC has various advantages, including a high level of hardness, low coefficient of friction, and low wear rate. In practice, a supporting layer is generally inserted between the DLC layer and the steel substrate to improve the load carrying capacity. In this study, an indentation and sliding contact problem involving a small, hard, spherical particle and a DLC-coated steel surface is modeled and analyzed using a nonlinear finite element code, MARC, to investigate the influence of the supporting layer thickness on the coating characteristics and the related coating failure mechanisms. The results show that the amount of plastic deformation and the maximum principal stress decrease with an increase in the supporting layer thickness. However, the probability of the high tensile stress within the coating layer causing a crack is greatly increased. Therefore, in the case of DLC coating with a supporting layer, fatigue wear can be another important cause of coating layer failure, together with the generally well-known abrasive wear.