• 제목/요약/키워드: incremental nonlinear dynamic analysis (IDA)

검색결과 56건 처리시간 0.022초

Data-driven modeling of optimal intensity measure of soil-nailed wall structures

  • Massoumeh Bayat;Mahdi Bayat;Mahmoud Bayat
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.85-92
    • /
    • 2023
  • This article examines the seismic vulnerability of soil nail wall structures. Detailed information regarding finite element modeling has been provided. The fragility function evaluates the relationship between ground motion intensities and the probability of surpassing a specific level of damage. The use of incremental dynamic analysis (IDA) has been applied to the soil nail wall against low to severe ground motions. In the nonlinear dynamic analysis of the soil nail wall, a set of twenty seismic ground motions with varying PGA ranges are used. The numerical results demonstrate that the soil-nailed wall reaction is extremely sensitive to earthquake ground vibrations under different intensity measures (IM). In addition, the analytical fragility curve is provided for various intensity values.

철골 모멘트 골조의 지진해석을 위한 등가 단자유도시스템 (Equivalent SDF Systems Representing Steel Moment Resisting Frames)

  • 한상환;문기훈;김진선
    • 한국지진공학회논문집
    • /
    • 제12권3호
    • /
    • pp.21-28
    • /
    • 2008
  • 다자유도 시스템의 내진 성능을 평가하기 위해서는 반복적인 비선형 시간 이력 해석이 필요하며 이를 위해 많은 계산과정과 노력이 필요하다. 이와 같이 해석에 따르는 어려움을 보완하기 위해 복잡한 다자유도 시스템을 반영할 수 있는 등가 단자유도 시스템을 개발하였다. 등가 단자유도의 이력 모델로는 일반적으로 이선형 모델과 삼선형 모델이 사용된다. 이러한 모델은 탄성 거동 이후 음강성을 가질 수 있도록 하여 지진 발생 시 중력하중에 의한 발생되는 효과를 반영하기 위해서이다. 본 연구에서는 철골모멘트 골조의 실제 응답을 예측하기 위하여 이러한 이력 모델들로 거동하는 등가단자유도 시스템의 필요조건에 대하여 평가하였다. 이를 위해 본 연구에서는 로스엔젤레스 지역의 SAC 9층 모멘트 저항 골조를 비선형 다자유도 시스템과 등가단자유도 시스템으로 모델링하여 반복하중 푸쉬오버 해석, 비선형 시간 이력해석 및 IDA(Incremental Dynamic Analysis)를 수행하여 비교 검토하였다. 또한 본 연구에서는 강도저감 모델에 대해서도 평가를 수행하였다.

Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path

  • Tubaldi, E.;Barbato, M.;Dall'Asta, A.
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.21-41
    • /
    • 2010
  • Multi-span steel-concrete composite (SCC) bridges are very sensitive to earthquake loading. Extensive damage may occur not only in the substructures (piers), which are expected to yield, but also in the other components (e.g., deck, abutments) involved in carrying the seismic loads. Current seismic codes allow the design of regular bridges by means of linear elastic analysis based on inelastic design spectra. In bridges with superstructure transverse motion restrained at the abutments, a dual load path behavior is observed. The sequential yielding of the piers can lead to a substantial change in the stiffness distribution. Thus, force distributions and displacement demand can significantly differ from linear elastic analysis predictions. The objectives of this study are assessing the influence of piers-deck stiffness ratio and of soil-structure interaction effects on the seismic behavior of continuous SCC bridges with dual load path, and evaluating the suitability of linear elastic analysis in predicting the actual seismic behavior of these bridges. Parametric analysis results are presented and discussed for a common bridge typology. The response dependence on the parameters is studied by nonlinear multi-record incremental dynamic analysis (IDA). Comparisons are made with linear time history analysis results. The results presented suggest that simplified linear elastic analysis based on inelastic design spectra could produce very inaccurate estimates of the structural behavior of SCC bridges with dual load path.

Calculating the collapse margin ratio of RC frames using soft computing models

  • Sadeghpour, Ali;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.327-340
    • /
    • 2022
  • The Collapse Margin Ratio (CMR) is a notable index used for seismic assessment of the structures. As proposed by FEMA P695, a set of analyses including the Nonlinear Static Analysis (NSA), Incremental Dynamic Analysis (IDA), together with Fragility Analysis, which are typically time-taking and computationally unaffordable, need to be conducted, so that the CMR could be obtained. To address this issue and to achieve a quick and efficient method to estimate the CMR, the Artificial Neural Network (ANN), Response Surface Method (RSM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) will be introduced in the current research. Accordingly, using the NSA results, an attempt was made to find a fast and efficient approach to derive the CMR. To this end, 5016 IDA analyses based on FEMA P695 methodology on 114 various Reinforced Concrete (RC) frames with 1 to 12 stories have been carried out. In this respect, five parameters have been used as the independent and desired inputs of the systems. On the other hand, the CMR is regarded as the output of the systems. Accordingly, a double hidden layer neural network with Levenberg-Marquardt training and learning algorithm was taken into account. Moreover, in the RSM approach, the quadratic system incorporating 20 parameters was implemented. Correspondingly, the Analysis of Variance (ANOVA) has been employed to discuss the results taken from the developed model. Additionally, the essential parameters and interactions are extracted, and input parameters are sorted according to their importance. Moreover, the ANFIS using Takagi-Sugeno fuzzy system was employed. Finally, all methods were compared, and the effective parameters and associated relationships were extracted. In contrast to the other approaches, the ANFIS provided the best efficiency and high accuracy with the minimum desired errors. Comparatively, it was obtained that the ANN method is more effective than the RSM and has a higher regression coefficient and lower statistical errors.

Ground motion selection and scaling for seismic design of RC frames against collapse

  • Bayati, Zeinab;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.445-459
    • /
    • 2016
  • Quantitative estimation of seismic response of various structural systems at the collapse limit state is one of the most significant objectives in Performance-Based Earthquake Engineering (PBEE). Assessing the effects of uncertainties, due to variability in ground motion characteristics and random nature of earthquakes, on nonlinear structural response is a pivotal issue regarding collapse safety prediction. Incremental Dynamic Analysis (IDA) and fragility curves are utilized to estimate demand parameters and seismic performance levels of structures. Since producing these curves based on a large number of nonlinear dynamic analyses would be time-consuming, selection of appropriate earthquake ground motion records resulting in reliable responses with sufficient accuracy seems to be quite essential. The aim of this research study is to propose a methodology to assess the seismic behavior of reinforced concrete frames at collapse limit state via accurate estimation of seismic fragility curves for different Engineering Demand Parameters (EDPs) by using a limited number of ground motion records. Research results demonstrate that accurate estimating of structural collapse capacity is feasible through applying the proposed method offering an appropriate suite of limited ground motion records.

Collapse fragility analysis of the soil nail walls with shotcrete concrete layers

  • Bayat, Mahmoud;Emadi, Amin;Kosariyeh, Amir Homayoun;Kia, Mehdi;Bayat, Mahdi
    • Computers and Concrete
    • /
    • 제29권 5호
    • /
    • pp.279-283
    • /
    • 2022
  • The seismic analytic collapse fragility of soil nail wall structures with a shotcrete concrete covering is investigated in this paper. The finite element modeling process has been well described. The fragility function evaluates the link between ground motion intensities and the likelihood of reaching a specific level of damage. The soil nail wall has been subjected to incremental dynamic analysis (IDA) from medium to strong ground vibrations. The nonlinear dynamic analysis of the soil nail wall uses a set of 20 earthquake ground motions with varying PGAs. PGD is utilized as an intensity measure, the numerical findings demonstrate that the soil nailing wall reaction is particularly sensitive to earthquake intensity measure (IM).

Seismic evaluation of isolated skewed bridges using fragility function methodology

  • Bayat, M.;Daneshjoo, F.;Nistico, N.;Pejovic, J.
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.419-427
    • /
    • 2017
  • A methodology, based on fragility functions, is proposed to evaluate the seismic performance of seismic isolated $45^{\circ}$ skewed concrete bridge: 1) twelve types of seismic isolation devices are considered based on two different design parameters 2) fragility functions of a three-span bridge with and without seismic isolation devices are analytically evaluated based on 3D nonlinear incremental dynamic analyses which seismic input consists of 20 selected ground motions. The optimum combinations of isolation device design parameters are identified comparing, for different limit states, the performance of 1) the Seismic Isolated Bridges (SIB) and 2) Not Seismic Isolated Bridge (NSIB) designed according to the AASHTO standards.

무량복합 및 벽식 구조시스템의 내진성능평가 (Seismic Performance Evaluation of Flat Column Dry Wall System and Wall Slab System Structures)

  • 강현구;이민희;김진구
    • 한국전산구조공학회논문집
    • /
    • 제25권3호
    • /
    • pp.259-266
    • /
    • 2012
  • 본 논문에서는 벽식 구조시스템의 일부 전단벽을 제거하여 공간의 가변성을 높인 무량복합 구조시스템의 내진성능을 ATC-63에 제시되어 있는 절차에 따라 파악하였으며, 동일한 규모의 벽식 구조시스템의 내진성능과 비교하였다. 해석모델로 12층 무량복합 및 벽식 구조시스템을 KBC 2009에 따라 설계하고 비선형 정적 및 비선형 증분 동적해석(IDA)을 수행하여 지진응답 및 붕괴거동을 파악하였다. 무량복합 시스템은 벽식 구조시스템 보다 적은 양의 콘크리트 물량으로 설계되었으며, 동일한 지진하중에 대하여 좀 더 큰 변위응답을 보이는 것으로 나타났다. IDA 해석결과 얻어진 붕괴 여유비(CMR)는 ATC-63에 제시된 한계상태를 만족하여 설계지진하중에 대하여 충분한 내진성능을 보유한 것으로 나타났다.

Probabilistic sensitivity analysis of multi-span highway bridges

  • Bayat, M.;Daneshjoo, F.;Nistico, N.
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.237-262
    • /
    • 2015
  • In this study, we try to compare different intensity measures for evaluating nonlinear response of bridge structure. This paper presents seismic analytic fragility of a three-span concrete girder highway bridge. A complete detail of bridge modeling parameters and also its verification has been presented. Fragility function considers the relationship of intensities of the ground motion and probability of exceeding certain state of damage. Incremental dynamic analysis (IDA) has been subjected to the bridge from medium to strong ground motions. A suite of 20 earthquake ground motions with different range of PGAs are used in nonlinear dynamic analysis of the bridge. Complete sensitive analyses have been done on the response of bridge and also efficiency and practically of them are studied to obtain a proficient intensity measure for these types of structure by considering its sensitivity to the period of the bridge. Three dimensional finite element (FE) model of the bridge is developed and analyzed. The numerical results show that the bridge response is very sensitive to the earthquake ground motions when PGA and Sa (Ti, 5%) are used as intensity measure (IM) and also indicated that the failure probability of the bridge system is dominated by the bridge piers.

Fragility evaluation of integral abutment bridge including soil structure interaction effects

  • Sunil, J.C.;Atop, Lego;Anjan, Dutta
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.201-213
    • /
    • 2021
  • Contrast to the conventional jointed bridge design, integral abutment bridges (IABs) offer some marked advantages like reduced maintenance and enhanced service life of the structure due to elimination of joints in the deck and monolithic construction practices. However, the force transfer mechanism during seismic and thermal movements is a topic of interest owing to rigid connection between superstructure and substructure (piers and abutments). This study attempts to model an existing IAB by including the abutment backfill interaction and soil-foundation interaction effects using Winkler foundation assumption to determine its seismic response. Keeping in view the significance of abutment behavior in an IAB, the probability of damage to the abutment is evaluated using fragility function. Incremental Dynamic Analysis (IDA) approach is used in this regard, wherein, nonlinear time history analyses are conducted on the numerical model using a selected suite of ground motions with increasing intensities until damage to abutment. It is concluded from the fragility analysis results that for a MCE level earthquake in the location of integral bridge, the probability of complete damage to the abutment is minimal.