• 제목/요약/키워드: increasing hydrophilicity

검색결과 72건 처리시간 0.021초

Removal of BP-3 Endocrine Disrupting Chemical (EDC) using cellulose acetate and ZnOnano particles mixed matrix membranes

  • Rajesha, B.J.;Chandan, H.R.;Sunil, K.;Padaki, Mahesh;Balakrishna, Geetha R.
    • Membrane and Water Treatment
    • /
    • 제7권6호
    • /
    • pp.507-520
    • /
    • 2016
  • The effect of ZnO on cellulose acetate in the removal of benzophenone-3 (BP-3) was investigated. The benzophenone-3 (BP-3) which is an endocrine disrupting chemical (EDC) was completely removed (100%) from the drinking water using Cellulose Acetate (CA) and zinc oxide (ZnO) composite membranes. The membranes were prepared by DIPS method and the filtration experiments were conducted by dead end filtration unit. The macrostructure of the membrane were studied by ATR-IR and XRD Spectra's. Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) were used to study the micro properties of the membranes. The laboratory experiments such as water uptake study and pure water flux performed to confirm the increasing hydrophilicity. The enhancing hydrophilicity was confirmed with respect to higher the concentration of nanoparticles. Evaluation of BP-3 removal was carried in different experimental conditions, such as, different Trans membrane pressure and different concentration of feed. The membrane with low pressure showed better performance by rejecting 100% of BP-3. However, 1 ppm, 3 ppm and 6 ppm of feed solution was used and among them 3 ppm of feed solution gives 100% rejection. The ZnO nanoparticales enhances the performance of CA membrane by showing maximum rejection.

Hydrophilic Modification of Poly(ethylene oxide) by UV Irradiation

  • Koo, Gwang-Hoe;Jang, Jin-Ho
    • 한국염색가공학회지
    • /
    • 제21권5호
    • /
    • pp.16-20
    • /
    • 2009
  • Films of Poly(ethylene oxide), PEO, were modified to impart hydrophilicity via UV irradiation. The UV irradiation treatment produced new photo-oxidized groups of carbonyl and ether groups as indicated in ATR and ESCA analysis. It was found that water contact angle decreased from $15^{\circ}C$ to $10^{\circ}C$ and total surface energy of PEO increased from 54.2 mN/m to 76.6 mN/m with increasing UV energy, which was attributed to significant contribution of acid base interaction of the photo-oxidized PEO rather than nonpolar interaction originating from the dominant increase in Lewis acid parameter. The increased hydrophilicity and surface energy were also proved by the decreased water wetting time.

Enhancement of hydrophilicity and anti-fouling property of polysulfone membrane using amphiphilic nanocellulose as hydrophilic modifier

  • Yang, Xue;Liu, Lifang;Jiang, Shuai
    • Membrane and Water Treatment
    • /
    • 제10권6호
    • /
    • pp.461-469
    • /
    • 2019
  • In the present work, we present a new effective hydrophilicity modifier for polysulfone (PSf) membrane. Firstly, amphiphilic nanocellulose (ANC) with different substitution degrees (SD) was synthesized by esterification reaction with nanocellulose (NC) and dodecyl succinic anhydride (DDSA). The SD and morphology of ANC were characterized by titration method and transmission electron microscopy (TEM). Then, the polysulfone (PSf)/ANC blend membranes were prepared via an immersion phase inversion method. The influence of SD on the morphology, structure and performances of PSf/ANC blend membrane were carefully investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), mechanical property test, contact angle measuring instrument and filtration experiment. The results showed that the mechanical property, hydrophilicity and anti-fouling property of all the PSf/ANC blend membranes were higher than those of pure PSf membrane and PSf/NC membrane, and the membrane properties were increased with the increasing of SD values. As ANC-4 has the highest SD value, PSf/ANC-4 membrane exhibited the optimal membrane properties. In conclusion, the prepared ANC can be used as an additive to improve the hydrophilicity and anti-fouling properties of polysulfone (PSf) membrane.

PDMS 표면특성에 따른 비균일계 마이크로채널의 유속 변화 (Flow Rate Changes in the Heterogeneous Rectangular Microchannels with Different Hydrophilicity for the PDMS Bottom Surface)

  • 노순영;이효송;김기호;최재호;유재근;윤수경;이영우
    • 청정기술
    • /
    • 제13권3호
    • /
    • pp.195-200
    • /
    • 2007
  • 본 연구에서는 표면특성에 따른 비균일계 마이크로채널에서의 유속 변화를 조사하였다. 비균일계 마이크로채널은 PDMS와 soft lithography를 사용하여 제작하였고, 마이크로채널의 내부 표면 중 아랫면만을 allyl alcohol로 증착하여 친수성을 띠게 하였다. 채널의 길이는 10, 20, 30 mm, 너비는 100, 200, $300\;{\mu}m$로 각각 제작하였으며, 채널 내 전기영동에 의한 흐름을 생성하기 위해 외부전압을 가해주었다. 그 결과 동일한 세기의 전기장과 밑면의 친수성 정도가 동일할 때 유속은 같았다. 이는 이론적 결과에 부합하고, 연구가 신뢰성이 있다는 것을 뒷받침할 수 있었다. 같은 친수성을 갖는 밑면일 때 채널의 너비가 증가할수록 유속도 증가하고, 친수성 정도가 큰 채널이 작은 채널보다 유속이 빨랐다. 이 결과는 밑면의 친수성 정도에 따라 채널 유속을 조절할 수 있다는 것을 의미한다.

  • PDF

자외선/오존 조사에 의한 Poly(vinyl butyral)의 광산화 (Photooxidation of Poly(vinyl butyral) Films by UV/Ozone Irradiation)

  • 주진우;장진호
    • 한국염색가공학회지
    • /
    • 제27권2호
    • /
    • pp.113-118
    • /
    • 2015
  • Poly(vinyl butyral), PVB was photooxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PVB film were investigated by the measurement of reflectance, surface roughness, contact angles, elemental composition, and zeta potential. With increasing UV energy, reflectance decreased in the visible and ultraviolet regions particularly at the wavelength of 400nm. The irradiation produced nano-scale surface roughness including the maximum peak-to-valley roughness increased from 274nm for the unirradiated PVB to 370nm at the UV energy of $5.3J/cm^2$. The improved hydrophilicity was due to the higher $O_{1s}/C_{1s}$ resulting from the introduction of polar groups such as C=O bonds. The surface energy of the PVB film increased from $35.3mJ/m^2$ to $39.3mJ/m^2$ at the irradiation of $15.9J/cm^2$. While the zeta potentials decreased proportionally with increasing UV energy, the cationic dyeability of the PVB increased accordingly resulting from the improved affinity of the irradiated PVB surfaces containing the photochemically introduced anionic and dipolar dyeing sites.

자외선/오존 조사에 의한 Poly(butylene succinate) 필름의 광산화 (Photooxidation of Poly(butylene succinate) Films by UV/Ozone Irradiation)

  • 주진우;장진호
    • 한국염색가공학회지
    • /
    • 제26권3호
    • /
    • pp.159-164
    • /
    • 2014
  • Biodegradable Poly(butylene succinate), PBS, was photooxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PBS film were investigated by the measurement of reflectance, surface roughness, contact angles, chemical composition, and zeta potential. With increasing UV energy, reflectance decreased in the visible and ultraviolet regions particularly at the wavelength of 380nm. The irradiation produced nano-scale surface roughness including the maximum peak-to-valley roughness increased from 106nm for the unirradiated sample to 221nm at the UV energy of $10.6J/cm^2$. The improved hydrophilicity was due to the higher $O_{1s}/C_{1s}$ resulting from the introduction of polar groups such as C-O and C=O bonds. The surface energy of the PBS increased from $42.1mJ/m^2$ for the unirradiated PBS to $56.8mJ/m^2$ at the irradiation of $21.2J/cm^2$. The zeta potentials of the UV-irradiated PBS also decreased proportionally with increasing UV energy. The cationic dyeability of the PBS increased accordingly resulting from the improved affinity of the irradiated PBS surfaces containing photochemically introduced anionic and dipolar dyeing sites.

친환경 플라즈마 기술을 이용한 고품질 인쇄용지 제조 (제1보) - 전압의 변화에 따른 도공원지 표면처리 - (Manufacturing of High Quality Coated Paper using Environmental Friendly Plasma Technology (I) - Surface treatment of base paper by different voltages -)

  • 신동준;김선경;이용규
    • 펄프종이기술
    • /
    • 제43권5호
    • /
    • pp.55-59
    • /
    • 2011
  • Atmospheric plasma technology was utilized in order to modify surface characteristics of base paper for coating. Argon(Ar) and oxygen(O2) gases were used. It was found that contact angle of a water droplet was decreased with increasing voltage during plasma treatment, meaning that the hydrophilicity of paper surface was increased. On the other hand, the physical properties like roughness and optical properties such as gloss, brightness and opacity were not influenced by the plasma treatment. In conclusion, atmospheric plasma technology can be utilized to control hydrophilicity of paper surface without affecting physical properties of the paper.

카본 나노튜브의 표면 처리에 의한 수퍼캐패시터 용량 변화 (Capacity Change of Supercapacitor by Surface Treatment of Carbon Nanotubes)

  • 김용태
    • 한국전기전자재료학회논문지
    • /
    • 제22권6호
    • /
    • pp.532-536
    • /
    • 2009
  • In this study, the capacity change of supercapacitor was investigated by surface treatments of carbon nanotubes as electrode materials with various methods, such as ball-milling, $KMnO_4$ and $H_2SO_4/HNO_3$ acid mixture. Surface treatments generated a number of defects on the surface of carbon nanotubes by attacking on $\pi$ bond in graphene layer, at which carboxyl groups were introduced. These hydrophilic groups could enhance the capacity by increasing the wettability of carbon nanotube surfaces. However, a drawback of the surface treatment was the decrease of conductivity by the loss of conduction path in graphene layer due to the defect formation. The surface treatment condition should be therefore optimized between hydrophilicity increase and conductivity decrease.

Interaction of Different Types of Cells on Poly(L-lactide-co-glycolide) Surface with Wettability Chemogradient

  • Gilson Khang;John M. Rhee;Lee, Jin-Ho;Lee, Ilwoo;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • 제8권6호
    • /
    • pp.276-284
    • /
    • 2000
  • A wettability chemogradient on poly(L-lactide-co-glycolide) (PLGA) films was prepared by treating the films in air with corona from a knife-type electrode whose power increases gradually along the sample length. The PLGA surfaces oxidized gradually with the increasing corona power, and the wettability chemogradient was created on the surfaces as evidenced by the measurement of water contact angles and electron spectroscopy for chemical analysis. The wettability chemogradient PLGA surfaces were used to investigate the interaction of four different types of cells such as hepatoma (Hep G2), osteoblast (MG 63), bovine aortic endothelial (CPAE), and fibroblast (NIH/3T3) cells in terms of the surface hydrophilicity/hydrophobicity of PLGA. The cells adhered and grown on the chemogradient surface along the sample length were counted and observed by scanning electron microscopy. It was observed that the cells were adhered, spread, and grown more onto the positions with moderate hydrophilicity of the wettability chemogradient PLGA surface than the more hydrophobic or hydrophillic positions, regardless of the cell types used. The maximum adhesion and growth of the cells appeared at around water contact angles of 53~55°. This result seems closely related with the serum protein adsorption on the surface; the serum proteins were also adsorbed more onto the positions with moderate hydrophilicity of the wettability chemogradient surface. It seems that the wettability plays important roles for cell adhesion, spreading and growth on the PLGA surface. The surface modification technique used in this study may be applicable tothe area of tissue engineering for the improvement of tissue compatibility of films- or scaffold-type substrates.

  • PDF

자외선/오존 조사에 의한 Poly(butylene terephthalate) 필름의 표면 광산화 (Surface Photooxidation of Poly(butylene terephthalate) Films by UV/Ozone Irradiation)

  • 주진우;장진호
    • 한국염색가공학회지
    • /
    • 제28권2호
    • /
    • pp.63-69
    • /
    • 2016
  • Poly(butylene terephthalate)(PBT) surface was modified by UV/ozone irradiation and the effect of UV energy on the surface properties of the irradiated PBT films were characterized by the reflectance, surface roughness, contact angles, ESCA, and ATR analyses of the film surface. The surface reflectance, at the short wavelength of visible spectrum of particularly 400nm, decreased with increasing UV energy. And the irradiation roughened the film surface uniformly in the nano scale. The maximum surface roughness increased from 110nm for the unirradiated sample to 303nm at the UV energy of $10.6J/cm^2$. The surface energy of PBT film increased from $50.5mJ/m^2$ for the unirradiated PBT to $58.8mJ/m^2$ at the irradiation of $21.2J/cm^2$. The improvement in hydrophilicity was caused by the introduction of polar groups containing oxygens such as C-O and C=O bonds resulting in higher $O_{1s}/C_{1s}$. The increased dyeability of the modified film to cationic dyes may be resulted from the photochemically introduced anionic and dipolar dyeing sites on the PBT films surfaces.