• Title/Summary/Keyword: inclined weir

Search Result 5, Processing Time 0.019 seconds

Temporal Variation of Local Scour Depth in the Downstream of Weir with Shapes (보 형상 변화에 따른 하류부 세굴의 시간적 변화)

  • Yeo, Chang Geon;Lee, Seungoh;Yoon, Sei Eui;Song, Jai Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.353-360
    • /
    • 2011
  • The objectives of this study were to analyzes temporal variation of local scour depth in the downstream of weir with shapes. Prediction of maximum or equilibrium scour depth was the main focus of engineers and researchers in the downstream of weir. However, it is necessary to analyzes temporal variation of local scour depth in the downstream of weir to predict real time scour depth. Experiment were performed with various weir shapes like sharp crest and inclined stepped with time variation and non-dimensional scourhole shapes, scour depths were proposed. A formula for predicting scour depths with temporal variation for weir were proposed through non-linear regression analysis. Temporal variation of scour depths could be estimated with suggested formula and 4 input data (Equilibrium scour depth, weir height, overflow depths, and water depth downstream). Suggested formula could make it possible to design a apron and bed protection economically in the downstream of a weir by considering flood duration time.

Improvement of Sedimentation Rate in the Settling Basin by Labyrinth Weir (래버린스 위어를 이용한 침사지 내 침전효율 개선)

  • Cho, Hun Sik;Yeo, Chang Geon;Im, Janghyuk;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.153-159
    • /
    • 2012
  • In this study, we proposed modified settling basins transformed by substituting the downstream sill for low head weirs such as generic labyrinth weir and inclined crest labyrinth weir worked as internal baffles. Laboratory experiments were carried out to understand hydraulic characteristics inside of the settling basin to improve the efficiency of sedimentation rate. For a quantitative analysis, we suggested the headwater ratio($H_t/P$), the magnification ratio(L/W) and the inflow rate per total crest length($q_L$) as primary analysis indexes for sedimentation efficiency. Six different types of settling basin were used for labscaled pilot tests by distinguishing with internal structures. Based on results, the variation of headwater ratio with the change of magnification ratio would highly affect the deposition efficiency(%) and it was improved under specific condition that repeating arrange number(N) of labyrinth weir was between 2 and 4. Also, the regression analysis showed that initial condition and shape for improving sedimentation efficiency were plotted on the graph for both $q_L{\geq}3.5cm^2/s$ and $L/W{\leq}3.5$. It would be expected that the geometrically optimized labyrinth settling basin could be designed with proper deposition efficiency for inflow rates of influent and required area of settling basin utilizing the proposed analysis index in this study.

Estimation of Baseflow Discharge through Several Streams in Jeju Island, Korea (제주도 주요하천의 기저유출량 산정)

  • Moon Duk-Chul;Yang Sung-Kee;Koh Gi-Won;Park Won-Bae
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.405-412
    • /
    • 2005
  • Groundwater in Jeju Island, flowing through main stream, is spring water from underground. To set a fixed quantity of groundwater flowing from surface in a hydrological view, 4 downstream (Woedo stream, Gangjung stream, Yeonwoe stream and Ongpo stream) were selected to calculate the characteristic of baseflow and the base-flow discharge through the data on tachometry. There were 11 to 14 level peak caused by runoff, mostly occurred during monsoon season. Also, duration of runoff was 15 to 25 hours, well reflecting the characteristic of inclined, short stream length in Jeju Island and pervious hydrogeographical feature. In case of Gangjung stream, Yeonwoe stream and Ongpo stream, variation of stream water level by baseflow rose above during summer, which was closely linked to the distribution of seasonal precipitation. From autumn to spring, water level fell below while that of Woedo stream remained the same all year round. Data on the water level observed in Woedo stream and Gangjung stream in every single minutes was applied to weir formula(equation of Oki and Govinda Rao) to calculate baseflow discharge. Also, using the data on current and water level calculated in Ongpo stream and Yeonwoe stream, water level-water flow rating was applied to assess base flow discharge.

Characteristics and Sensitivity Analysis of Scour in the downstream of Inclined Weir (경사형보 하류부 세굴특성 및 민감도 분석)

  • Yeo, Chang Geon;Seo, Guen Soon;Song, Jai Woo;Lee, Seung Oh
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.98-98
    • /
    • 2011
  • 중소규모 하천에서 많이 설치되어 있는 경사형보를 대상으로 하류부 세굴에 대한 수리모형실험과 수치모의를 통하여 경사형보 하류부 세굴특성과 세굴영향인자들에 대한 민감도 분석을 실시하였다. 수리모형실험은 폭 0.8m, 길이 20m의 가변경사 직선 개수로에서 1 : 2(H/L)경사를 가지는 경사형보의 높이, 월류수심, 하류부 수심 변화에 따른 최대 세굴심과 세굴길이의 변화를 관측하였고, 수치모의는 유사이동 모의가 가능한 3차원 수치모형인 FLOW-3D를 이용하여 경사형 보의 경사 변화에 따른 하류부 세굴특성을 모의하였다. 수리모형실험 결과 최대 세굴심 및 세굴길이에 가장 영향을 크게 미치는 인자는 월류고이며, 하류부 수심은 최대 세굴심과 세굴길이의 감소효과 뿐만 아니라 세굴공의 형상에도 영향을 미쳤다. 낙하류의 유입 각도가 예연보에 비하여 작은 경사보는 예연보에 비하여 수평방향 유속이 상대적으로 증가하여 세굴길이가 증가하였으며 이로 인하여 세굴공 하류부 천이영역의 사면경사가 상대적으로 완만하게 형성되었다. 세굴공의 상류부에 재순환 영역이 발생되어 천이영역에서 이송되는 유사의 최대세굴심 발생 위치에 퇴적되는 현상을 방해하며 세굴공의 모양은 완전히 발달된 이중(double) 세굴공을 생성하였으며, 특히 낙하류의 유입각도와 하류부 수위의 영향으로 하류수심($h_t$)과 낙차고(H)의 비($h_t/H$)가 1.0 미만인 경우에 이중(double) 세굴공이 발생하였다. 경사형보의 경사각 영향에 따른 하류부 세굴 영향은 3차원 수치모형을 이용하여 모의하였으며, 경사각을 1V/2H, 1V/3H, 1V/4H로 변화시키며 수치모의를 수행하였다. 수치모의 결과 경사각이 증가할수록 최대 세굴심은 증가하는 경향을 보이고 그에 따른 증가율은 감소하였다. 보 높이, 월류고, 하류부 수심, 경사각 변화에 따른 세굴심의 변화는 상대민감도 방법을 이용하여 비교하였으며 주요 영향인자에 대한 민감도비는 월류고가 보 하류부 세굴에 가장 큰 영향을 미치고, 경사각, 보 높이, 하류부 수심 순이다. 특히 보 하류부의 수심은 음의 민감도를 보이며, 이는 보 하류부 수심이 증가할수록 세굴심이 감소하는 것을 의미한다. 추후 보완 실험 및 수치모의를 추가 활용한다면, 경사형보 하류부 물받이 및 하상보호공 설계를 위한 정량적인 기초자료를 제공할 수 있을 것으로 판단된다.

  • PDF

The Study for Reduction Effect of Riverbed Scour due to Shape of Vanes (베인 형태에 따른 하상세굴 저감 효과에 관한 연구)

  • Hae Min Noh;Ho Jin Lee;Sung Duk Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.57-63
    • /
    • 2023
  • Recently, Heavy rains and super typhoons occurred by climate change cause a lot of damage in Korea. In order to reduce such damage, various types of river maintenance projects are being promoted, but it is difficult to maintain the balance of rivers in Korea with distinct flood and dry seasons. In particular, river structures installed as a river maintenance project cause various problems such as scouring of structures and their foundations during floods and river bed changes. In order to reduce such bed scour, various vanes are installed in the bend of the river, and various bed scour reduction effects appear depending on the size, arrangement, and shape of the vanes. The vane regenerates the secondary flow in the opposite direction to the secondary flow generated by the centrifugal force, thereby reducing scour around the outer bed and promoting deposition. The theory of this study uses the governing equation applying the continuity equation that satisfies the law of conservation of mass and the momentum equation that satisfies the conservation of momentum, and measures the overall average flow velocity change rate according to design factors to investigate the effect of vanes under various conditions. Both the average and cross-sectional flow velocities decreased in both the trapezoidal vane and the square vane. In addition, vanes installed perpendicularly or inclined to the direction of river flow generate a secondary flow in the opposite direction to the secondary flow generated by centrifugal force, thereby canceling the secondary flow of centrifugal force, so the effect of the vane appears.