• Title/Summary/Keyword: inclined static loading test

Search Result 3, Processing Time 0.018 seconds

Experiment of single screw piles under inclined cyclic pulling loading

  • Dong, Tian Wen;Zheng, Ying Ren
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.801-810
    • /
    • 2015
  • The ultimate pullout capacity under inclined dynamic loading is an important measure of the destruction degree of vertical screw piles (anchors) under dynamic actions. Based on the static and dynamic tests on two kinds of model screw piles, the ultimate bearing capacity was researched considering different distance-width ratio of blade (D/W) and preloading ratio. The results compared well with other experimental data available in the literature. This research reveals that D/W might determine the failure model of the piles (anchors), for example D/W = 3.14 or 5; a critical dynamic-static loading ratio (DSLR) existed in the experiments. The critical DSLR was reached under the conditions of 40%~60% preloading (D/W = 3.14) or 20%~40% preloading (D/W = 5), respectively.

The UndrainBd Behavir or of Drilled Shaft Foundations Subjected to Static Inclined Loading (정적 경사하중을 받는 현장타설 말뚝기초의 비배수 거동)

  • ;Kulhawy, Fred H.
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.91-112
    • /
    • 1995
  • Drilled shafts are used increasingly as the foundations for many types of structures. However, very little knowledge of drilled shaft behavior under inclined load is available. In this study, a systematic experimental testing program was conducted to understand the undrained behavior of drilled shaft foundations under inclined loads. A semi-theoretical method of predicting the inclined capacity was developed through a parametric study of the variables such as shaft geometry and load inclination. Test parameters were chosen to be representative of those most frequently used in the electric utility industry. Short, rigid shafts with varying depth/diameter(D/B) ratios were addressed, and loading modes were investigated that includes exial uplift, inclined uplift, and inclined compression loads. Capacities were evaluated using the structural interaction formula and an equation developed from this experimental study. This new equation models the laboratory data well and is applicable for the limites field data.

  • PDF

A Study on the Shear Behavior of Reinforced Concrete Structures (철근(鐵筋)콘크리트 구조물(構造物)의 전단거동(剪斷擧動)에 관한 연구(研究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.83-92
    • /
    • 1987
  • Fatigue fracture of reinforced concrete structures are characterized by considerably larger strains and microcracking as compared to fracture of R.C. structures under static loading. The strain of stirrup is increased suddenly by the occuring of inclined crack and the average strain ${\epsilon}_{\omega}$ of all stirrups in a structure at maximum load increase approximately in proportion to log N. The structures critical in longitudinal reinforcement seemed to have an endurance limit of 60~70 percent of static ultimate strengths for 1,000,000 cycles. In this test, the average fatigue strength at 1,000,000 cycles for all structures tested was approximately 65 percent of the static ultimate strength.

  • PDF