• Title/Summary/Keyword: incineration treatment

Search Result 160, Processing Time 0.019 seconds

Manufacture and Characterization of Interlocking Block Using Incineration Ash of Dyeing Wastewater Treatment Sludge (염색슬러지 연소재를 이용한 보도블록의 제작과 물성평가)

  • 권기홍;임우성
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.167-172
    • /
    • 2004
  • In this study, we carried out the research for the recycling potential of the dyeing wastewater treatment sludges as construction materials. The incineration ash of sludges were solidified as interlocking block in condition of sludge/cement ratio 2.5%, 5.0% and 10%, respectively. Those interlocking blocks were cured for 3days, 7days and 28days in ambient air condition, respectively. The results of this research were summarized as follows: The dyeing wastewater treatment sludges was below the Korea Leaching Limit. After incineration, the ash was manufactured as interlocking block. Bendable strength over 50kg$_{f}$/$\textrm{cm}^2$ suitable for interlocking block was obtained only when the sample was cured for 7days at sludge/cement ratio 2.5% and 5.0%. Hygroscopic ratio of interlocking block was above the Korea Industry Standard. We think that recycling of the incineration ash from dyeing wastewater treatment sludges to interlocking block will have high potential possibility.y.

A Study on Investigate the Suitability of ${NH_4}^+$ Applications of Food Waste Water Instead of Urea in the Incineration of Municipal Solid Waste (생활폐기물 소각시 요구되는 요소수의 대체물질로 음식물 폐수 속의 암모니아 적용에 관한 연구)

  • Go, Sung Gyoo;Cho, Yong Kun;Lee, Young Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.97-105
    • /
    • 2012
  • This study examined for possibility of the food wastewater incineration treatment method as one of overland treatment method by incineration through liquefied spray of food wastewater when incinerating domestic wastes under operation and for the relationship, etc of air discharge material discharged in incineration, and the results of study are as follow: The food wastewater as one of overland treatment method was analysed 94-96% of moisture contents. Temperature of incinerator outduct during mixed incineration of food wastewater with MSW was average $897^{\circ}C$ and incineration of only MSW was $925^{\circ}C$. Temperature of the mixed incineration of food wastewater was dropped about $28^{\circ}C$ by incineration of only MSW. Concentration of nitrogen oxides(NOx) among air discharge gases was studied by 50ppm, 46ppm when inputting $200{\ell}/hr$, $300{\ell}/hr$ into the incinerator as the quantity of food wastewater. In the mixed incineration of food wastewater, generation speed of scales in the inside of a tubular exhaust gas boiler became rapid and the scale generation quantity became large but the exhaust gas boiler normally operated since scales were removed in cleaning of the tube with a compressive air cleaning facility and there was no opening clogging phenomena in a filter cloth of the filtering dust collector. The overland treatment method, not ocean dumping of food wastewater can be proposed as a technology since mixed incineration of food wastewater with MSW in the existing domestic waste incineration plant is possible, and operation costs of the incineration facility were reduced since use of chemicals such as ammonia and urinary hydrogen ion excretion, etc used in incineration facilities for removing nitrogen oxides(NOx).

Polymer Waste Incineration by Oxygen Enriched Combustion (사업장폐기물의 순산소 소각기술)

  • Han, In-Ho;Choi, Kwang-Ho;Choung, Jin-Woo
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.132-139
    • /
    • 2000
  • Oxygen enriched incineration can increase the incineration capacity for wastes and dramatically reduce air pollutant emissions such as CO and dioxine by the allowing complete combustion of wastes in incinerator. Furthermore, this technology is proven to have many benefits including an energy-saving, cost-effective, and versatile application for diverse wastes compared with the conventional air incineration technology. The reduced pollutant emissions in flue gas and higher incineration efficiency are also available when the oxygen enriched air is used for the high temperature incineration systems. On the basis of the experimental results the oxygen enrichment system is successfully applied to the rotary kiln incinerator for industrial wastes. The oxygen enriched incineration system could be allowed more compact design of incinerator and flue gas treatment system due to both increasing incineration capacity and reducing flue gas volume. Therefore, oxygen enriched incineration technology is becoming highlighted in the waste incinerator which strongly require more stable efficiency and environmentally friendly and safe operationPut Abstract text here.

  • PDF

A Study on Characteristics of Water Quality in Wastewater according to the Washing of Municipal Solid Waste Incinerator (MSWI) Ash

  • Byun, Mi-Young;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.296-300
    • /
    • 2001
  • In order to recycle the incineration ash (bottom ash and fly ash) generated from the incineration of municipal waste for a cement material, salts as well as heavy metal should be removed by the stabilization treatment. Most of these heavy metal and over 80% of salts are removed by a washing as a pre-treatment. However, wastewater which is another pollutant is generated by a washing, then proper treatment should be developed. First the characteristics of incineration ashes collected from two domestic full-sized incinerators were investigated and removal rate of salts and heavy metals from them also studied. The wastewater quality was compared to the criteria of the regulation by analyzing the characteristics of generated wastewater during the washing of incineration ash as a condition of liquid/solid ratio. Also, we tried to used this experimental results for the basic data to develop proper processing technique of municipal waste.

  • PDF

Nanowaste Treatment via Incineration (나노폐기물의 소각 처리)

  • Kim, Younghun
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Rapid growth in nanotechnology promise novel benefits through the exploitation of their unique industrial applications. However, as increasing of production amount of nanomaterials, their unintentional exposure to the environment has been caused. Therefore, there is a need for effective management of nanowaste to the sustainable nanotechnology. One possible endpoint at the environmental exposure scenario for nanowaste treatment is incineration. Although a few study on the incineration of nanomaterials was reported, pioneering researchers found that although it is possible to incinerate nanowaste without releasing nanoparticles into the atmosphere, the residues (bottom ash or slag) with nanomaterials eventually end up in landfills. Though there are still many questions to understand the fate of nanomaterials in incinerator, firstly we have to study whether nanowaste treatment via incineration is safe to human and environment.

A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities (생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토)

  • Park, Sang-Jin;Phae, Chae-gun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

A Study on the Improvement Method of Forest Fire Caused by Waste Incineration at the Farming Residential Area (농촌 주거지역 쓰레기소각으로 인한 산불화재 개선방안에 관한 연구)

  • Lee, Young-Sam
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.3
    • /
    • pp.9-15
    • /
    • 2016
  • Currently the forest area is 6,370,000 hectare (ha) which occupies 63.7% in Korea. The forest has good functions such as production of forest products, conservation of national land, prevention of disasters, etc. However constructing houses near the forest area make bad situation like illegal waste incineration by resident. So research subject is forest fire caused by waste incineration place including facility. And this study was conducted about statistical analysis and research analysis of the 100 waste incineration places including facilities at the country town. Statistical analysis shows that March is 27% which percentage is the highest number of forest fire in 10 years' average. The number of forest fire caused by waste incineration is 45 which is the third highest number in the fire statistic. The distance between waste incineration place including facility and forest area is 30m, 40m and 50m. That 40m (36%) is the most common distance from forest area. The types of waste incineration are ground (62%), the temporary facility made with oil drum can (35%) and other made with steel sheet, concrete, etc. The result of this study is that government and local government must conduct the improvement measure to reduce illegal incineration such as waste pickup area made with rain and wind proof type installed near residence, expenses for waste treatment, enlightenment and training, etc. Also considering their age and income are needed for realistic improvement.

Forecast of Greenhouse Gas Emission by Policy of Waste Management in Korea (폐기물관리 정책변화에 따른 온실가스 배출량 예측)

  • Kim, Hyun-Sun;Kim, Dong-Sik;Yi, Seung-Muk
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.5
    • /
    • pp.343-350
    • /
    • 2008
  • Quantifying greenhouse gas (GHG) emissions in the waste sector is important to evaluating measures for reduction of GHG emissions. To forecast GHG emissions and identify potential emission reduction for GHG emissions, scenarios applied with environmental policy such as waste reduction and structural change of waste treatment were developed. Scenario I estimated GHG emissions under the business as usual (BAU) baseline. Scenario II estimated GHG emissions with the application of the waste reduction policy while scenario III was based on the policy of structural change of waste treatment. Scenario IV was based on both the policies of waste reduction and structural change of waste treatment. As for the different scenarios, GHG emissions were highest under scenarios III, followed by scenarios IV, I, and II. In particular, GHG emissions increased under scenario III due to the increased GHG emissions from the enhanced waste incineration due to the structural change of waste treatment. This result indicated that the waste reduction is the primary policy for GHG reduction from waste. GHG emission from landfill was higher compared to those from incineration. However, the contribution of GHG emission from incineration increased under scenario III and IV. This indicated that more attention should be paid to the waste treatment for incineration to reduce GHG emissions.

A Study on Using Incineration Heat of Municipal Solid Wastes - Case Study of Taegu metropolitan city - (생활(生活)쓰레기 소각열(燒却熱) 이용실태(利用實態)에 관(關)한 연구(硏究) - 대구광역시(大邱廣域市)를 중심(中心)으로 -)

  • Hong, Won-Hwa;Yi, Gang-Kook;Lee, Ji-Hee
    • KIEAE Journal
    • /
    • v.1 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • This study aims to make a fundamental data for a policy-making decision in treatment and disposal of municipal solid wastes and presents a research data on the discharge properties of municipal solid wastes and making a unit of them in the Taegu metropolitan city. The results can be summarized as follows; survey the discharge properties of municipal solid wastes, calorific values and to present a research-data in supplying incineration-heat of wastes with the area of Sung-seo in Taegu. So, using fundamental data for planning and running wastes-incineration plants as well as trying to make better Urban Environmental Infra-structure. The results are obtained from the study. 1) The proportion of combustible wastes in Taegu increased from 89.6% to 94.47% during 1993~2000. However, the proportion of incombustibles decreased from 10.4% to 5.53% during 1993~2000. 2) The value of representative properties is about 1500~2000kcal/kg. So we can expect that it should be made use of energy-resources positively. 3) The heat from Sung-seo wastes-incineration plants is used to produce electronic-energy for wastes-incineration plants in summer season. The heat from Sung-sea wastes-incineration plants is in charge of 27% which of supplying the area of Sung-seo with district heating energy in winter season.

  • PDF

Heating Values of Agricultural Wastes for Substitute Energy Development (농업부산물의 발열량 조사(지역환경 \circled2))

  • 홍성구
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.563-568
    • /
    • 2000
  • Animal waste is a major agricultural waste or wastewater that requires appropriate treatment to prevent environmental pollution. In this presentation, it is examined if incineration of manure compost is an alternative to treatment of animal waste. Heating values of selected biomass including manure compost were obtained using a bomb calorimeter. Based on heating values of manure and manure compost, ranging from 1200 - 1500 kcal/kg on wet base, incineration could be an alternative for animal waste treatment if available land is limited for land application and sufficient reduction of water content in manure compost.

  • PDF