• 제목/요약/키워드: incineration heat

검색결과 70건 처리시간 0.022초

생활(生活)쓰레기 소각열(燒却熱) 이용실태(利用實態)에 관(關)한 연구(硏究) - 대구광역시(大邱廣域市)를 중심(中心)으로 - (A Study on Using Incineration Heat of Municipal Solid Wastes - Case Study of Taegu metropolitan city -)

  • 홍원화;이강국;이지희
    • KIEAE Journal
    • /
    • 제1권1호
    • /
    • pp.45-52
    • /
    • 2001
  • This study aims to make a fundamental data for a policy-making decision in treatment and disposal of municipal solid wastes and presents a research data on the discharge properties of municipal solid wastes and making a unit of them in the Taegu metropolitan city. The results can be summarized as follows; survey the discharge properties of municipal solid wastes, calorific values and to present a research-data in supplying incineration-heat of wastes with the area of Sung-seo in Taegu. So, using fundamental data for planning and running wastes-incineration plants as well as trying to make better Urban Environmental Infra-structure. The results are obtained from the study. 1) The proportion of combustible wastes in Taegu increased from 89.6% to 94.47% during 1993~2000. However, the proportion of incombustibles decreased from 10.4% to 5.53% during 1993~2000. 2) The value of representative properties is about 1500~2000kcal/kg. So we can expect that it should be made use of energy-resources positively. 3) The heat from Sung-seo wastes-incineration plants is used to produce electronic-energy for wastes-incineration plants in summer season. The heat from Sung-sea wastes-incineration plants is in charge of 27% which of supplying the area of Sung-seo with district heating energy in winter season.

  • PDF

폐열회수시설이 설비된 생활폐기물 소각자원화시설 온실가스 배출량 산정 시 오차분석 (2009~2013) (Study on the Measurement of GHG Emissions and Error Analysis in Form the MSW Incineration Plant Equipment with the Recovery Heat System (2009~2013))

  • 최원근;서란숙;박승철
    • 한국환경과학회지
    • /
    • 제25권2호
    • /
    • pp.239-246
    • /
    • 2016
  • This study aims to analyze region-specific trends in changing greenhouse gas emissions in incineration plants of local government where waste heat generated during incineration are reused for the recent five years (2009 to 2013). The greenhouse gas generated from the incineration plants is largely $CO_2$ with a small amount of $CH_4$ and $N_2O$. Most of the incineration plants operated by local government produce steam with waste heat generated from incineration to produce electricity or reuse it for hot water/heating and resident convenience. And steam in some industrial complexes is supplied to companies who require it for obtaining resources for local government or incineration plants. All incineration plants, research targets of this study, are using LNG or diesel fuel as auxiliary fuel for incinerating wastes and some of the facilities are using LFG(Landfill Gas). The calculation of greenhouse gas generated during waste incineration was according to the Local Government's Greenhouse Emissions Calculation Guideline. As a result of calculation, the total amount of greenhouse gas released from all incineration plants for five years was about $3,174,000tCO_2eq$. To look at it by year, the biggest amount was about $877,000tCO_2eq$ in 2013. To look at it by region, Gyeonggido showed the biggest amount (about $163,000tCO_2eq$ annually) and the greenhouse gas emissions per capita was the highest in Ulsan Metropolitan City(about $154kCO_2eq$ annually). As a result of greenhouse gas emissions calculation, some incineration plants showed more emissions by heat recovery than by incineration, which rather reduced the total amount of greenhouse gas emissions. For more accurate calculation of greenhouse gas emissions in the future, input data management system needs to be improved.

소각시설 여열을 이용한 대규모 시설원예 단지의 난방 시스템 적용 가능성 평가 (Utilization of Heat from Waste-Incineration Facility for Heating Large-Scale Horticultural Facilities)

  • 이재호;현인탁;이광호
    • 설비공학논문집
    • /
    • 제27권8호
    • /
    • pp.418-425
    • /
    • 2015
  • The Korean government plans to establish large-scale horticultural facilities using reclaimed land to improve the competitiveness of the national agricultural sector at the government level. One of the most significant corresponding problems is the ongoing dependence of these facilities on fossil fuel, whereby constant heating is necessary during the winter season to provide the necessary breeding conditions for greenhouse crops. In particular, high-level energy consumption is incurred from the use of heating-related coverings with large heat-transmission coefficients such as those composed of vinyl and glass. This study investigated the potential applicability of waste-incineration heat for use in large-scale horticultural facilities by evaluating the hot-water temperature, heat loss, and available greenhouse area as functions of the distance between the incineration facility and the greenhouse. In conclusion, waste-incineration heat from a HDPE pipe can heat a horticultural facility of 10 ha if the distance is less than 8 km.

회귀분석을 이용한 소각장의 소각열 회수 경제성 분석 연구 (Economic Assessment of the Heat Recovery from Incineration Plants Based on Regression Analysis)

  • 윤정민;손형민;박동윤;장성주
    • 자원리싸이클링
    • /
    • 제23권3호
    • /
    • pp.3-12
    • /
    • 2014
  • 본 연구에서는 대표적인 폐기물 최종 처리시설인 소각장을 대상으로 소각열 회수에 따른 경제성 분석을 수행하였다. 국내에서 운영 중인 소각장의 건설 및 운영비용, 소각열 회수량에 대한 함수식을 회귀분석을 통해 도출하였으며, 이를 바탕으로 생애주기비용을 비교함으로써 소각열 회수에 대한 경제성을 비교 분석하였다. 도출된 회귀식으로 일일 80톤 처리규모의 소각장을 기준으로 경제성 분석을 진행한 결과, 소각열 회수시 추가 설비 및 인건비로 인한 초기투자 비용 및 운영비용이 크지만, 열회수에 따른 LNG 대체효과로 계산시 11년 이상 운영할 경우 미회수 소각장과 비교하여 경제적 우위성이 있었다. 또한 열 판매와 온실가스 감축효과를 편익으로 계산할 경우 19년의 자본회수기간이 소요됨을 확인하였다.

생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토 (A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities)

  • 박상진;배재근
    • 한국폐기물자원순환학회지
    • /
    • 제35권8호
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • 청정기술
    • /
    • 제2권2호
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF

제주지역 환경시설지구의 미활용 에너지 최적 활용방안에 관한 연구 (A Study on Optimum Application of Unutilized Energies in the Jeju Environment Facility)

  • 강병찬;박윤철
    • 동력기계공학회지
    • /
    • 제11권3호
    • /
    • pp.9-15
    • /
    • 2007
  • This paper provides a methodology for the optimization of waste heat usage in Jeju Province. The incineration plant was considered as heat source and the food garbage plant and the youth hostel were selected as heat sink of this study. The distribution of the reusing energy in incineration plant is decide by load analysis and numerical calculation of the operational methodology. The main objective of this study is on the reduction of the fuel costs and reuse of waste heat. As the results, the efficiency of the incineration plant and two heat sink, the food garbage plant and the youth hostel, are improved and economical suggestions are proposed through the optimization analysis.

  • PDF

하수슬러지와 생활폐기물 혼합소각시 열부하 변화 및 대기오염물질 부하 변화를 통한 혼합소각 가능성에 관한 연구 (The Feasibility of Co-Incineration for Municipal Solid Waste and Sewage Sludge through the Change of Heat Loading and Atmospheric Pollutants Loading)

  • 조재범;김우구;연경호;신정훈
    • 대한환경공학회지
    • /
    • 제34권9호
    • /
    • pp.583-589
    • /
    • 2012
  • 하수슬러지의 처분 방안으로서 하수슬러지를 생활폐기물과 혼합소각시의 가능성을 타진하기 위해 전체폐기물 중 하수슬러지를 20%까지 혼합하여 실험한 결과, 열부하 및 대기오염물질(질소산화물, 황산화물)부하에 영향을 크게 주지 않는 것으로 나타났다. 생하수슬러지(함수율 78.8%) 및 건조하수슬러지(함수율 60%)를 혼합소각한 결과, 건조하수슬러지를 혼합한 경우에는 열부하변동이 거의 없었으나 생하수슬러지를 혼합소각한 경우는 열부하가 다소 낮아지는 것으로 나타나 전처리를 한슬러지 혼합소각이 평상시와 같은 운전조건으로 소각로 연소를 이룰 수 있을 것으로 판단되나 고발열 생활폐기물 발열에 의한 소각로 파손을 방지하기 위해서는 에너지 비용 및 슬러지 경화현상에 의한 국부소각 방지 등을 고려하여 생하수슬러지에 수분을 공급하여 소각하는 방안도 고려해 볼만 하다고 판단된다.

미활용 열에너지의 집단에너지 주민 수용성에 관한 연구 (A Study on Residents' Acceptance of Unutilized Heat in District Heating)

  • 원두환;오세신
    • 자원ㆍ환경경제연구
    • /
    • 제32권3호
    • /
    • pp.191-215
    • /
    • 2023
  • 본 연구는 미활용 열에너지를 집단에너지 열원으로 활용할 경우 주민 수용성을 비교 평가하는 것에 초점을 두고 있다. 열 부문 탄소중립에 있어 중요한 수단인 미활용 열에너지는 원활한 보급을 위해 주민 수용성의 확보가 중요하기 때문이다. 난방 소비자를 대상으로 한 설문조사를 통해 미활용 열에너지에 대한 인식조사를 수행하였으며, 컨조인트 모형을 이용해 소각열과 수열, 데이터센터 폐열을 기존의 가스 열원과 지불의사액을 평가해 비교하였다. 분석결과 제시된 미활용 열에너지의 보급 활성화가 중요하다고 인식하면서도 미활용 소각열에 비해서 수열과 데이터센터 폐열에 선호도가 높음을 확인하였다.

자원순환형 소각열 이용시스템에 관한 평가 (Evaluation on Utilizing Systems of Incineration Heat as Resource cycling Type)

  • 정용현
    • 한국환경과학회지
    • /
    • 제12권4호
    • /
    • pp.503-510
    • /
    • 2003
  • How to plan the energy system is one of the keys f3r constructing the Environment -Friendly City. for this reason, a great number of surveys for utilizing unused energy have conducted by a planner. In regard to unused energy, the heat from incineration plants classify as a unused energy having high-exergy-energy. From this point of view, It is studied about the plant systems providing heat to district heating & cooling(D.H.C) and producing electric power. It is divided four system models as system I (10K [kgf/cm$^2$) vapor as outlet of boiler, supply far 10K vapor and return to 60$^{\circ}C$ as supply condition of district heating), system II (30 K vapor as outlet of boiler, supply for 5t vapor and return to 60f as supply condition of district heating), system 111 (30 K vapor as outlet of boiler, supply for 85$^{\circ}C$ hot water and return to 60$^{\circ}C$ as supply condition of district heating), system IV (30 K vapor as outlet of boiler, supply for 47$^{\circ}C$ hot water and return to 40t as supply condition of district heating). The results from the upper condition of four system, System II got a proper on economical benefits and system IV calculated as benefiting on energy saving effects, and suggest indifference curve as the total evaluation method of both economical benefits and energy saving.