• Title/Summary/Keyword: incineration heat

Search Result 70, Processing Time 0.034 seconds

A Study on Using Incineration Heat of Municipal Solid Wastes - Case Study of Taegu metropolitan city - (생활(生活)쓰레기 소각열(燒却熱) 이용실태(利用實態)에 관(關)한 연구(硏究) - 대구광역시(大邱廣域市)를 중심(中心)으로 -)

  • Hong, Won-Hwa;Yi, Gang-Kook;Lee, Ji-Hee
    • KIEAE Journal
    • /
    • v.1 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • This study aims to make a fundamental data for a policy-making decision in treatment and disposal of municipal solid wastes and presents a research data on the discharge properties of municipal solid wastes and making a unit of them in the Taegu metropolitan city. The results can be summarized as follows; survey the discharge properties of municipal solid wastes, calorific values and to present a research-data in supplying incineration-heat of wastes with the area of Sung-seo in Taegu. So, using fundamental data for planning and running wastes-incineration plants as well as trying to make better Urban Environmental Infra-structure. The results are obtained from the study. 1) The proportion of combustible wastes in Taegu increased from 89.6% to 94.47% during 1993~2000. However, the proportion of incombustibles decreased from 10.4% to 5.53% during 1993~2000. 2) The value of representative properties is about 1500~2000kcal/kg. So we can expect that it should be made use of energy-resources positively. 3) The heat from Sung-seo wastes-incineration plants is used to produce electronic-energy for wastes-incineration plants in summer season. The heat from Sung-sea wastes-incineration plants is in charge of 27% which of supplying the area of Sung-seo with district heating energy in winter season.

  • PDF

Study on the Measurement of GHG Emissions and Error Analysis in Form the MSW Incineration Plant Equipment with the Recovery Heat System (2009~2013) (폐열회수시설이 설비된 생활폐기물 소각자원화시설 온실가스 배출량 산정 시 오차분석 (2009~2013))

  • Choi, Won-Geun;Seo, Ran-Sug;Park, Seung-Chul
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • This study aims to analyze region-specific trends in changing greenhouse gas emissions in incineration plants of local government where waste heat generated during incineration are reused for the recent five years (2009 to 2013). The greenhouse gas generated from the incineration plants is largely $CO_2$ with a small amount of $CH_4$ and $N_2O$. Most of the incineration plants operated by local government produce steam with waste heat generated from incineration to produce electricity or reuse it for hot water/heating and resident convenience. And steam in some industrial complexes is supplied to companies who require it for obtaining resources for local government or incineration plants. All incineration plants, research targets of this study, are using LNG or diesel fuel as auxiliary fuel for incinerating wastes and some of the facilities are using LFG(Landfill Gas). The calculation of greenhouse gas generated during waste incineration was according to the Local Government's Greenhouse Emissions Calculation Guideline. As a result of calculation, the total amount of greenhouse gas released from all incineration plants for five years was about $3,174,000tCO_2eq$. To look at it by year, the biggest amount was about $877,000tCO_2eq$ in 2013. To look at it by region, Gyeonggido showed the biggest amount (about $163,000tCO_2eq$ annually) and the greenhouse gas emissions per capita was the highest in Ulsan Metropolitan City(about $154kCO_2eq$ annually). As a result of greenhouse gas emissions calculation, some incineration plants showed more emissions by heat recovery than by incineration, which rather reduced the total amount of greenhouse gas emissions. For more accurate calculation of greenhouse gas emissions in the future, input data management system needs to be improved.

Utilization of Heat from Waste-Incineration Facility for Heating Large-Scale Horticultural Facilities (소각시설 여열을 이용한 대규모 시설원예 단지의 난방 시스템 적용 가능성 평가)

  • Lee, Jaeho;Hyun, Intak;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.418-425
    • /
    • 2015
  • The Korean government plans to establish large-scale horticultural facilities using reclaimed land to improve the competitiveness of the national agricultural sector at the government level. One of the most significant corresponding problems is the ongoing dependence of these facilities on fossil fuel, whereby constant heating is necessary during the winter season to provide the necessary breeding conditions for greenhouse crops. In particular, high-level energy consumption is incurred from the use of heating-related coverings with large heat-transmission coefficients such as those composed of vinyl and glass. This study investigated the potential applicability of waste-incineration heat for use in large-scale horticultural facilities by evaluating the hot-water temperature, heat loss, and available greenhouse area as functions of the distance between the incineration facility and the greenhouse. In conclusion, waste-incineration heat from a HDPE pipe can heat a horticultural facility of 10 ha if the distance is less than 8 km.

Economic Assessment of the Heat Recovery from Incineration Plants Based on Regression Analysis (회귀분석을 이용한 소각장의 소각열 회수 경제성 분석 연구)

  • Yoon, Jungmin;Son, Hyeongmin;Park, Dong Yoon;Chang, Seongju
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.3-12
    • /
    • 2014
  • This study aims at providing an economic assessment for incineration plants which recover heat during its incineration process. In this study, Life Cycle Cost(LCC) of incineration plants is performed based on each regression analysis formula for construction cost, operation cost, and heat generation in order to compare economic feasibility. The result shows that the incineration plant recovering waste heat while processing 80 tons of waste per day increases both initial investment and operation cost but this type of an incineration plant has economical predominance from the recovered waste heat over the one that does not recover heat when being operated for more than eleven years if the retrieved heat replaces the use of LNG. And its payback time reaches more than 19 years in case of selling heat and performing emission trading.

A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities (생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토)

  • Park, Sang-Jin;Phae, Chae-gun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF

A Study on Optimum Application of Unutilized Energies in the Jeju Environment Facility (제주지역 환경시설지구의 미활용 에너지 최적 활용방안에 관한 연구)

  • Kang, B.C.;Park, Y.C.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.9-15
    • /
    • 2007
  • This paper provides a methodology for the optimization of waste heat usage in Jeju Province. The incineration plant was considered as heat source and the food garbage plant and the youth hostel were selected as heat sink of this study. The distribution of the reusing energy in incineration plant is decide by load analysis and numerical calculation of the operational methodology. The main objective of this study is on the reduction of the fuel costs and reuse of waste heat. As the results, the efficiency of the incineration plant and two heat sink, the food garbage plant and the youth hostel, are improved and economical suggestions are proposed through the optimization analysis.

  • PDF

The Feasibility of Co-Incineration for Municipal Solid Waste and Sewage Sludge through the Change of Heat Loading and Atmospheric Pollutants Loading (하수슬러지와 생활폐기물 혼합소각시 열부하 변화 및 대기오염물질 부하 변화를 통한 혼합소각 가능성에 관한 연구)

  • Cho, Jae-Beom;Kim, Woo-Gu;Yeon, Kyeong-Ho;Shin, Jung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.583-589
    • /
    • 2012
  • The various promotion countermeasures such as solidification, carbonization, and the creation of cement materials have been considered to existing treatment methods such as incineration and the creation of composts, since direct landfill was prohibited for encouraging the recycling based on the sludge treatment on land. The Main objective of this study is to investigate the feasibility of co-incineration for MSW (Municipal Solid Waste) and SS (Sewage Sludge) through the change of heat and atmospheric pollutants. In this study, LHV (Low Heating Value) is 100~300 kcal/kg because the MC (Moisture Content) of de-hydrated sewage sludge is approximately 80%. From the results, we knew the feasibility of co-incineration for MSW (80%) and SS (20%). As the co-incineration rate of SS up to 20% became higher, the loading of heat and atmospheric pollutants was not influenced.

A Study on Residents' Acceptance of Unutilized Heat in District Heating (미활용 열에너지의 집단에너지 주민 수용성에 관한 연구)

  • Doo Hwan Won;Saesin Oh
    • Environmental and Resource Economics Review
    • /
    • v.32 no.3
    • /
    • pp.191-215
    • /
    • 2023
  • This study focuses on evaluating and comparing residents' acceptance of unutilized heat such as hydrothermal energy and waste heat from waste incineration and data centers in the case that they are used as district heat sources. This is because securing residents' acceptance is significantly important in order for unutilized heat to be considered as a heat source of district heating and cooling to achieve neutrality in the heating and cooling sector. A survey of heating consumers' perception on unutilized heat energy is conducted and a conjoint model is used to analyze the willingness to pay of heating consumers on incineration heat, water heat, and data center waste heat and to compare them with existing gas heat sources. As a result of the analysis, it is confirmed that district heating using hydrothermal energy and data center waste heat is preferred to district heating from heat from a natural gas plant or waste incineration.

Evaluation on Utilizing Systems of Incineration Heat as Resource cycling Type (자원순환형 소각열 이용시스템에 관한 평가)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.503-510
    • /
    • 2003
  • How to plan the energy system is one of the keys f3r constructing the Environment -Friendly City. for this reason, a great number of surveys for utilizing unused energy have conducted by a planner. In regard to unused energy, the heat from incineration plants classify as a unused energy having high-exergy-energy. From this point of view, It is studied about the plant systems providing heat to district heating & cooling(D.H.C) and producing electric power. It is divided four system models as system I (10K [kgf/cm$^2$) vapor as outlet of boiler, supply far 10K vapor and return to 60$^{\circ}C$ as supply condition of district heating), system II (30 K vapor as outlet of boiler, supply for 5t vapor and return to 60f as supply condition of district heating), system 111 (30 K vapor as outlet of boiler, supply for 85$^{\circ}C$ hot water and return to 60$^{\circ}C$ as supply condition of district heating), system IV (30 K vapor as outlet of boiler, supply for 47$^{\circ}C$ hot water and return to 40t as supply condition of district heating). The results from the upper condition of four system, System II got a proper on economical benefits and system IV calculated as benefiting on energy saving effects, and suggest indifference curve as the total evaluation method of both economical benefits and energy saving.