• Title/Summary/Keyword: inchworm

Search Result 63, Processing Time 0.015 seconds

Design of a Linear Ultrasonic Actuator for Small Lens Actuation (초소형 렌즈 구동을 위한 선형 초음파 구동기 설계)

  • Kwon, Tae-Seong;Choi, Yo-Han;Lee, Seung-Yop
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.251-256
    • /
    • 2006
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile phone cameras. However, the magnetic coils used in conventional electromagnetic motors are a major obstacle for the miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM(ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 5.4 mm/s at 10V saw signal of 41 kHz.

  • PDF

Movement characteristics of pneumatic actuators for the semi-autonomous colonoscopic system (자율이동 대장 내시경을 위한 공압구동기의 이동 특성)

  • Kim, Byung-Kyu;Lee, Jin-Hee;Park, Ji-Sang;Lim, Young-Mo;Park, Jong-Oh;Kim, Soo-Hyun;Hong, Yeh-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.295-300
    • /
    • 2001
  • In recent years, as changing the habit of eating, the pathology in the colon grows up annually. For that reason, the colonoscopy is generalized. But it requires much time to acquire a dexterous skill to perform an operation. And the procedure is painful to the patient. Therefore, biomedical and robotic researchers are developing a locomotive colonoscope that can travel safely in colon. In this paper, we propose a novel design and concept of semi-autonomous colonoscope and two actuators for the micro robot. The micro robot comprises camera and LED for diagnosis, steering system to pass through the loop, pneumatic actuator and bow-shaped flexible supporters to control a contact force and to keep the space between colon wall and the actuator. For actuating mechanism, we suggest two models. One is based on the reaction force, and the other is impact force. In order to validate the concept and the performance of the actuators, we carried out the preliminary experiments in rigid pipes.

  • PDF

Locomotive Mechanism Based on Pneumatic Actuators for the Semi-Autonomous Endoscopic System (자율주행 내시경을 위한 공압 구동방식의 이동메카니즘)

  • Kim, Byungkyu;Kim, Kyoung-Dae;Lee, Jinhee;Park, Jong-Oh;Kim, Soo-Hyun;Hong, Yeh-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.345-350
    • /
    • 2002
  • In recent years, as changing the habit of eating, the pathology in the colon grows up annually. The colonoscopy is generalized, but if requires much time to acquire a dexterous skill to perform an operation and the procedure is painful to the patient. biomedical and robotic researchers are developing a locomotive colonoscope that can travel safe1y in colon. In this paper, we propose a new actuator and concept of semi-autonomous colonoscope. The micro robot comprises camera and LED for diagnosis, steer- ing system to pass through the loop, pneumatic actuator and bow-shaped flexible supporters to control a contact force and to pass over haustral folds in colon. For locomotion of semi-autonomous colonoscope, we suggest an actuator that is based on impact force between a cylinder and a piston. In order to validate the concept and the performance of the actuator, we carried out the simulation of moving characteristics and the preliminary experiments in rigid pipes and on the colon of pig.